Browse Topic: Advanced composite materials

Items (148)
This study investigates the thermal buckling behavior of axially layered functionally graded material (FGM) thin beams with potential applications in automotive structures. The FGM beam is constructed from four axially stratified sections, with the proportional amount of metal and ceramic fluctuating through the thickness. The buckling analysis is carried out for three different support configurations: clamped-clamped, simply supported-simply supported, and clamped-simply supported. The primary objective is to identify the optimal thermal buckling temperature of the FGM thin beam using the Taguchi optimization method. Beam arrangements are established using a Taguchi L9 orthogonal array and analyzed using finite element software (ANSYS). Layers 1-4 of the axially layered beam are considered process parameters, while the thermal buckling temperature is the response parameter. Minitab software performs an Analysis of Variance (ANOVA) with a 95% confidence level to identify the most
Pawale, DeepakBhaskara Rao, Lokavarapu
Exploration vehicles on Titan are to be developed with considerations on the atmosphere present, especially the abundance of Nitrogen. This study focuses on identification of optimum materials for the propellers supporting an airship specifically created for Titan exploration. The base airship is designed to accommodate the coaxial propeller. The base of this airship is to be developed with four weather stations for collection of data samples. The stations are installed on inflatable platforms and have storage devices for recording and transmitting data collected by the aerobot. The airship will operate in Titan's atmosphere and atmospheric conditions, focusing on its design and computational analysis of structural effects and fluid dynamics. The Titan aerobot is built with a co-axial 4-blade propeller, horizontal and vertical fins, and a reaction wheel for yaw maneuvers. The co-axial propulsive system is capable of overcoming drag during steady level flight in the Titan atmosphere
Baskar, SundharVinayagam, GopinathPisharam, Akhila AjithGnanasekaran, Raj KumarRaji, Arul PrakashStanislaus Arputharaj, BeenaL, NatrayanGanesan, BalajiRaja, Vijayanandh
This work focuses on the design and multi-parametric analysis of a designed propeller for a Pentacopter unmanned aerial vehicle (UAV). The basic and secondary design inputs, along with performance data like propeller diameter, pitch angle, chord length, and lift coefficient, are established using a standard analytical method. Approximately ten distinct airfoils, specifically NACA 2412, NACA 4109, NACA 4312, NACA 4409, NACA 4415, NACA 5317, NACA 6409, NACA 6412, NACA 23024, and NACA 25012, are evaluated over 13 Reynolds Numbers with the angle of attacks (AOA) of 20, varying from -5 to 15 degrees, for the purpose of detailed propeller design. The lift and drag coefficient values for ten distinct airfoils, utilizing a Reynolds number of 13 and 20 angles of attack, are obtained from the XFOIL software. Three sophisticated airfoils are selected from a pool of ten based on their high Lift-to-Drag (L/D) ratio performance. The selected airfoils with a high L/D ratio are NACA 6409, NACA 4109
Veeraperumal Senthil Nathan, Janani PriyadharshiniArumugam, ManikandanRajendran, MahendranSolaiappan, Senthil KumarKulandaiyappan, Naveen KumarMadasamy, Senthil KumarStanislaus Arputharaj, BeenaL, NatrayanRaja, Vijayanandh
This study focuses on developing and deploying an Unmanned Aquatic Vehicle (UAV) capable of underwater travel. The primary objectives of this project are to detect the presence of dimethyl sulfide and toluene, as well as to identify any potential oil leakage in underwater pipelines. The UAV has a maximum operating depth of 300 m below the water surface. The design of this UAV is derived from the natural design of Rhinaancylostoma, an underwater kind of fish. The maximum operational setting for this mission is fixed at a depth of approximately 300 m beneath the surface of the sea, and the choice of this species is suitable for fulfilling the objectives of this undertaking. This technology will mitigate the risk associated with human interaction in inspection processes and has the potential to encompass various other resources in the future. The initial design data of the UAV is determined using analytical processes and verified formulas. The selection of the airfoil is done by comparing
Veeraperumal Senthil Nathan, Janani PriyadharshiniRajendran, MahendranArumugam, ManikandanRaji, Arul PrakashSakthivel, PradeshMadasamy, Senthil KumarStanislaus Arputharaj, BeenaL, NatrayanRaja, Vijayanandh
These days, aluminum and other material composites are indispensable for a wide range of engineering applications, including automotive-related ones. The machinability investigations of hybrid metal matrix composites (HMMC) made of Al 6061 are reported in this paper. Graphene nanoparticles (GNp) and boron carbide were used to reinforce Al6061 alloy for the experiment. Stir casting was used to create the hybrid composite under the right circumstances. Since HMMC is not easy to machine using conventional machining procedures, the advanced method of electrical discharge machining (EDM) was used. EDM machinability studies were carried out on stir-casted Al-B4C-GNP composite materials to examine the effects of wire EDM machining variables, including current, pulse on, and pulse off, on surface roughness and material removal rate. Taguchi based Desirability function Analysis was used to optimize the EDM process parameters for maximization of the material removal rate (MRR) and minimization
Kala, Lakshmi KMadhuri, KReddy, DamodaraTarigonda, HariprasadR L, KrupakaranTharehallimata, GurubasavarajuNaidu, B Vishnu Vardhana
This research examines the thermal instability of slender beams composed of functionally graded materials (FGMs), with a specific focus on their suitability for engine hood components. The FGM combines the durability of aluminum with the heat tolerance of silicon nitride. The study aims to determine the maximum temperature the beam can withstand without buckling under various support conditions, simulating the uneven heat distribution experienced by engine hoods in actual use. The FGM structure comprises four longitudinally arranged layers, where the ceramic and metallic components gradually shift across the thickness. Finite element modeling software (ANSYS) is utilized to examine the buckling response under diverse temperature conditions. To enhance the thermal performance of the engine hood panel, the Taguchi L9 orthogonal array methodology is employed utilizing Minitab 19 software. The first four layers of the FGM beam are defined as process variables, while the critical buckling
Pawale, DeepakBhaskara Rao, Lokavarapu
Aluminum Matrix Composites (AMCs) are gaining traction in aerospace, automotive, and marine industries due to their superior mechanical properties. By integrating hard ceramic particles such as silicon carbide (SiC) and aluminum oxide (Al₂O₃) into aluminum matrices, these composites exhibit enhanced wear resistance and strength-to-weight ratios. This study explores the fabrication and characterization of 6061-T6 aluminum alloy matrix composites, reinforced individually with SiC and Al₂O₃ particles through the squeeze casting technique. The research includes a comprehensive analysis of microstructures and mechanical properties, focusing on compressive strength, Brinell hardness, and tribological behavior. Findings reveal that SiC and Al₂O₃ reinforcements boost compressive strength by up to 27% and 47%, respectively, and increase hardness by up to 29% and 20%, respectively, compared to unreinforced aluminum.
Thirumavalavan, R.Santhosh, V.Sugunarani, S.Regupathi, S.Sundaravignesh, S.
This study investigates the wear and hardness properties of AA8011 hybrid metal matrix composites (MMCs) reinforced with silicon carbide (SiCp) and titanium diboride (TiB₂), addressing a significant gap in the existing literature regarding the optimization of reinforcement levels in AA8011. The goal is to enhance the material’s wear resistance and hardness for high-performance applications. While AA8011 is known for its excellent mechanical properties and corrosion resistance, limited research has focused on optimizing both wear behavior and surface hardness through the combination of TiB₂ and SiCp reinforcements. Using the pin-on-disk method, this study explores various compositions, showing that the composite containing 2% TiB₂ and 1% SiCp exhibited the best wear resistance, with a 25% improvement over the base alloy, and an increase in hardness by more than 115%. Developing AA8011-based composites with enhanced durability and hardness for use in demanding environments such as
Thirumavalavan, R.Mugendiran, V.Santhosh, V.Manoj, M.Sundaravignesh, S.
The advantages of magnesium alloy composites over traditional engineering materials include their high strength and lightweight for automotive applications. The proposed work is to compose the AZ61 alloy composite configured with 0–12% silicon nitride (Si3N4) via semisolid-state stir processing assisted with a (sulfur hexafluoride—SF6) inert environment. The prepared AZ61 alloy and AZ61/4% Si3N4, AZ61/8% Si3N4, and AZ61/12% Si3N4 are machined by electrical discharge machining (EDM) under varied source parameters such as pulse On/Off (Ton/Toff ) time (100–115/30–45 μs), and composition of composite. The impact of EDM source parameters on metal removal rate (MRR) and surface roughness (Ra) is measured. For finding the optimum source for higher MRR and good surface quality of EDM surface, the ANOVA optimization tool with L16 design is executed and analyzed via a general linear model approach. With the influence of ANOVA, the Ton/Toff and composite composition found 95.42%/1.27% and 0.36
Venkatesh, R.
The main aim of this experimental study is to investigate the wear properties of a hybrid composite material composed of a banana fibre mat, rice husk powder, and an epoxy matrix polymer filled with multi-walled carbon nanotubes (MWCNT). This research emphasizes the assessment of the composite's characteristics and behaviour. The adjustment of various ratios of fibres and fillers within polymer matrix hybrid composites finds application in numerous engineering fields, particularly in the automotive and aerospace industries. The experimental evaluation is conducted using a pin-on-disk wear tester to analyze the specimens in terms of pin wear, friction coefficient, and friction force. Experimental trials were conducted using L9 orthogonal arrays following the Taguchi design of experiments, and the output response was optimized by implementing a hybrid approach of Gray relational analysis. It depends upon the suitability of the wear performance needs of the application to obtain the
Senthilkumar, N.Ramu, S.Yuvaperiyasamy, M.Sabari, K.
This Experimental study demonstrates the influence of titanium dioxide (TiO2) and boron carbide (B4C) reinforcements on the mechanical behaviour and microstructural characteristics of lightweight hybrid metal matrix composites (HMMCs) tailored for compact automobile applications. The Aluminium metal matrix composites were synthesized using stir casting technique to ensure uniform dispersion of titanium dioxide (TiO2) and boron carbide (B4C) reinforcements within the aluminium matrix. Characterization techniques such as scanning electron microscopy (SEM) and optical Microscopy, were employed to analyze the microstructural evolution and phase distribution. Mechanical properties such as hardness, tensile strength, and wear resistance were systematically evaluated. The results demonstrated significant enhancements in mechanical performance with 38% increase in tensile strength, 22% increase in impact strength which are attributed to the synergistic effects of TiO2 and B4C. These
Jaswin, M. ArockiaGeetha, R.Mathialagan, SaravananSuresh, S.
Basalt-based products are known to provide substantial wear and corrosion resistance even in harsh environments. This paper aims to explore the stir casting technique as an efficient way to reinforce basalt particulates into Aluminium (AA7075). The properties such as hardness, ultimate tensile strength with corrosion behaviour of the composites were evaluated and compared with as-cast AA7075 fabricated under the same conditions. It is evident from the results that an increase in basalt particulate content significantly increases the ultimate tensile strength of 216 MPa and hardness of 123 VHN. The mechanism of bonding between basalt particulate and aluminum alloy at the interface was studied using scanning electron microscopy (SEM). AA7075 matrix composites exhibited better corrosion resistance and they showed enhancement in thermal and mechanical properties.
Vallimanalan, A.Murali, M.Mahendran, R.Manivannan, S.
The modern-day development in the field of mobility demands the development of advanced engineering materials for various engineering applications. Composite materials play a pivotal role in the advancement of mobility by achieving overall weight reduction and thereby contributing to the sustainability of the environment. Metal matrix composites has played a crucial role over the last few decades in the automotive industry replacing the conventional metal in achieving a better strength to weight ratio. Metal matrix composites can be a combination of a metal and a ceramic combined at a macroscopic level to achieve better mechanical and tribological properties at a reduced weight to strength ratio. Aluminium being one of the largest metals widely used in automobiles, are gradually being replaced with Aluminium metal matrix composites. Aluminium – silicon carbide composite is a key interest among the researchers due to the attractive mechanical and tribological properties that enhance the
Valsan, Ashray
Growing demand for fuel-efficient vehicles and lower CO2 emissions has led to the development of lightweight materials. Aluminum composites are being used to achieve lightweighting to improve performance, efficiency, and sustainability across various industries. The unique properties of aluminum composites make them an attractive choice for researchers and designers looking to optimize their products. Reinforcement materials play a vital role in the development of these composites, acting as barriers to dislocation movement within the aluminum matrix. This effectively strengthens the material and prevents deformation under load, resulting in increased tensile strength and fatigue resistance. Additionally, aluminum composites exhibit improved thermal and electrical conductivity, making them suitable for automotive applications. In this study, metal matrix composites (MMCs) of aluminum 7075 alloys were developed using silicon carbide (SiC) and flyash as reinforcements. Three different
Manwatkar, Asmita AshokSantosh Jambhale, MedhaMahagaonkar, NitinSharma, Dipesh
The future of space travel is seemingly changing by the day and a Coventry University academic is doing his bit to stay at the front of the space race.
Recent developments in manufacturing techniques and the development of Al7075 metal matrix composites (MMCs) with reinforcements derived from industrial waste have been steadily gaining popularity for aerospace and automobile applications due to their outstanding properties. However, there are still a lot of limitations with these composite materials. A great deal of research has been done to create new Al7075 MMC materials with the use of economic fly ash (FA) that possesses superior mechanical properties, corrosion resistance, density, and cycle cost. This review outlines different synthesis techniques used in the development of Al7075 MMCs using stir casting. Effects of FA along with other reinforcements on the mechanical, wear, machining, and microstructural properties of the composite are also discussed. Finally, a summary of the application of FA-based MMCs and a recap of the previous discoveries and challenges are reported. Future scope and potential areas of application are
Kumar, RandhirMondal, Sharifuddin
The aim of this work is to develop a composite material and investigate its mechanical characteristics especially suited for automotive applications, and finite element analysis (FEA) of fabricated composite is carried out to examine the mechanical behavior of composites. Utilizing aluminum alloy ingot (LM13) as the matrix material and zirconium diboride (ZrB2) as reinforcement, this work creates composites with improved mechanical and physical properties by accounting impact, tensile, compression, and hardness behavior. FEA is used to examine the increasing behavior of material properties for various volume segments of reinforcement (2.5, 5, 7.5, and 10 wt%) that are supplied to the matrix to determine an acceptable volume percentage of composite based on their input features. In FEA, the impact, tensile, compression, and hardness characteristics of the composite model are investigated by considering von Mises stress, equivalent elastic strain, and total deformation. The experimental
Vijayan, S. N.Chelladurai, Samson Jerold SamuelSaiyathibrahim, A.Infant Jegan Rakesh, A. J.Thriveni, K.Preethi, V.Jatti, Vijaykumar S.Karthik, S.Balaji, K.Saranya, S.
In this investigation, AA6351 alloy matrix composites with a larger volume proportion of SiC (20 wt%) were fabricated and tested for microstructure and mechanical behavior. Composites were hot extruded from mechanically milled matrix and reinforcements. Hot extrusion uniformly distributed reinforcements in the matrix and strengthened phase interaction. Mechanical ball milling causes AA6351 powder to become more homogeneous, reducing the mean particle size from 38.66 ± 2.31 μm to 23.57 ± 2.31 μm due to particle deformation. The micrograph shows that the SiC particles are equally dispersed in the AA6351 matrix, avoiding densification and reinforcing phase integration issues during hot extrusion. In hot extrusion, SiC particles are evenly distributed in the matrix, free of pores, and have strong metallurgical bonds, resulting in a homogenous composite microstructure. SiC powders and mechanical milling increase microhardness and compressive strength, giving MMC-A 54.9% greater than AA6351
Saiyathibrahim, A.Murali Krishnan, R.Jatti, Vinaykumar S.Jatti, Ashwini V.Jatti, Savita V.Praveenkumar, V.Balaji, K.
Metal matrix composites (MMCs) have evoked a keen interest in recent times for their potential applications in automotive and aerospace industry components. One such particulars include dry sliding bearings, which have widespread applications in various industries due to their self-lubricating properties, high wear resistance, and low maintenance requirements. The wear as a consequence of metal-to-metal friction can have a detrimental effect, expediting malfunctions or much more adverse spin-offs on the whole system. This study focuses on the development and characterization of a novel dry bearing material composed of a MMC consisting of aluminum (Al), titanium dioxide (TiO2), and silicon carbide (SiC). Tribological tests revealed a low friction coefficient, ensuring efficient and reliable operation. The results indicate the enhancement of MMC’s performance and durability in dry bearings, contributing to the efficiency and reliability of engineering systems. The study not only
Ravi Raj, V.Dhivya Praban, S. V.Jayasooriya, M.Sairam, T. S.
Since the beginning of time, people have desired the best materials for production. Metals are often too heavy to be used in manufacturing. Polymer matrix composites (PMC) can be considered more dependable than metals in practical applications because of their high strength-to-weight ratio so it is a good alternative of metals. The article’s objective is to investigate the various PMC properties that are reinforced with carbon fiber. CFRP (Carbon fiber-reinforced polymer) was first made using the hand layup method with carbon fiber as a reinforcement and epoxy resin as a matrix after a thorough literature review. As CFRP have higher stiffness and superior “strength-to-weight ratio,” fiber-reinforced polymer (FRP) composites perform notably better than various conventional metallic materials. The qualities of the matrix can be changed to enhance the characterization of FRP composites. The mechanical qualities of FRP composites have risen as a result of significant advancements in the
Haider, RehanSingh, Pradeep KumarSharma, Kamal
Demands for new materials with superior properties are rising as technological advancement is speeding up globally. Composite materials are gaining popularity due to their enhanced mechanical properties over metal and alloys. Aluminum metal matrix composites (MMCs) are becoming popular in several areas of application such as aerospace, automobile, armed forces, and other commercial applications due to their lightweight, increased strength, better fracture toughness, stiffness, corrosion resistance, and cost-effectiveness. The present study reviews the effects of different reinforcements on MMC materials. The main aim of the present work is to give a clear idea to the readers about the role of individual reinforcement in Al7075-based MMCs. Also, the details of weight% and size of different reinforcement are provided, which will help the readers in their future works. It has been observed that inorganic reinforcements give better mechanical and wear properties to composite materials. For
Kumar, RandhirMondal, Sharifuddin
This research examines the impact of different amounts of copper (Cu) powder on the wear characteristics of acrylonitrile butadiene styrene (ABS)–Cu composites. Various formulations of ABS–Cu composites have been produced using injection molding, with different amounts of surfactant. Wear properties were evaluated by conducting tribological testing in accordance with ASTM standards. The findings indicated a decrease in wear loss, particularly when using a mixture consisting of 23% ABS, 70% Cu, and 7% surfactant. Machine learning regression algorithms successfully forecasted wear behavior with R-squared values over 0.97. The models used in the analysis included linear, stepwise linear, tree, support vector machine (SVM), efficient linear, Gaussian progression, ensemble, and neural network regression models. This research emphasizes the significance of composite materials in fulfilling contemporary technical requirements. The acquired insights enable the development of materials with
Jatti, Vijaykumar S.Saiyathibrahim, A.Murali Krishnan, R.Balaji, K.
In research that may lead to advancements in the design of next-generation airplane and spacecraft, MIT engineers used carbon nanotubes to prevent cracking in multilayered composites. Massachusetts Institute of Technology, Cambridge, MA To save on fuel and reduce aircraft emissions, engineers are looking to build lighter, stronger airplanes out of advanced composites. These engineered materials are made from high-performance fibers that are embedded in polymer sheets. The sheets can be stacked and pressed into one multilayered material and made into extremely lightweight and durable structures. But composite materials have one main vulnerability: the space between layers, which is typically filled with polymer “glue” to bond the layers together. In the event of an impact or strike, cracks can easily spread between layers and weaken the material, even though there may be no visible damage to the layers themselves. Over time, as these hidden cracks spread between layers, the composite
To save on fuel and reduce aircraft emissions, engineers are looking to build lighter, stronger airplanes out of advanced composites. These engineered materials are made from high-performance fibers that are embedded in polymer sheets. The sheets can be stacked and pressed into one multilayered material and made into extremely lightweight and durable structures.
Thermo-mechanical fatigue and natural aging due to environmental conditions are challenging to simulate in an actual test with advanced fiber-reinforced composites, where their fatigue and aging behavior are little understood. Predictive modeling of these processes is challenging. Thermal cyclic tests take a prohibitively long time, although the strain rate effect can be scaled well for accelerating the mechanical stress cycles. Glass fabric composites have important applications in pipes, aircraft, and spacecraft structures, including microwave transparent structures, impact-resistant parts of the wing, fuselage deck and many other load-bearing structures. Often additional additively manufactured features and coatings on glass fabric composites are employed for thermal and anti-corrosion insulations. In this paper, we employ a thermo-mechanical fatigue model based on an accelerated fatigue test and life prediction under hot-to-cold cycles. Thermo-mechanical strain-controlled stress
Kancherla, Kishore BabuB S, DakshayiniRaju, BenjaminRoy Mahapatra, Debiprosad
Aluminum and its alloys entered a main role in the engineering sectors because of their applicable characteristics for indispensable applications. To enhance requisite belongings for the components, the composition of variant metal/nonmetal with light metal alloys is essential in the manufacturing industries. To enhance the wear resistance with significant strength property of the aluminum alloy 2024, the reinforcement SiC and fly ash (FA) were added with the designation Al2024 + 10% SiC; Al2024 + 5% SiC + 5% FA; and Al2024 + 10% FA via stir-casting technique. The wear resistance property of the composites was tested in pin-on-disc with a dry-sliding wear test procedure. The experiment trials were designed in Box–Behnken design (BBD) by differing the wear test parameters like % of reinforcement, sliding distance (m), and load (N). The wear tests on casted samples were carried out at the constant velocity of 2 m/sec, such that the corresponding wear rate for the experiment trials was
Sivakumar, N.Sireesha, S. C.Raja, S.Ravichandran, P.Sivanesh, A. R.Aravind Kumar, R.
Composite materials play an important role in aerospace manufacturing. The light weight, durability and ability to create complex shapes from molds make these materials ideal for frames and structural components that enable lighter, more fuel-efficient aircraft. While composite structures can weigh up to 20 percent less than their metal counterparts, these materials can often be more difficult to machine. The extremely abrasive nature of carbon fiber reinforced polymers (CFRPs) will wear down standard cutting tools more quickly than almost any other material. A standard carbide cutting tool may only hold up to cutting a few feet of CFRPs before its dimensional stability fails, while in traditional metal machining that same tool might last 20 to 50 times that before wearing out.
This research looks into how abrasive water jet machining (AWJM) can be used on carbon fiber-reinforced polymer (CFRP) materials, specifically how the kerf characteristics change with respect to change in process parameters. We carefully looked into four important process parameters: stand-off distance (SOD), water pressure (WP), traverse rate (TR), and abrasive mass flow rate (AMFR). The results showed that as SOD goes up, the kerf taper angle goes up because of jet dispersion, but as WP goes up, the angle goes down because jet kinetic energy goes up. The TR was directly related to the kerf taper angle, but it made the process less stable. The kerf drop angle was not greatly changed by AMFR. When it came to kerf top width, SOD made it wider, WP made it narrower, TR made it narrower, and AMFR made it a little wider. When the settings (SOD: 1 mm, WP: 210 MPa, TR: 150 mm/min, AMFR: 200 g/min) were optimized, the kerf taper angle and kerf top width were lowered. This improved the accuracy
Chandgude, AbhimanyuBarve, Shivprakash B.
The present study focuses on the impacts of pistachio shell particles (2–10 wt.%) on the mechanical and microstructures properties of Al–Cu–Mg/pistachio shell particulate composites. To inspect the impact of the pistachio shell powder content with Al–Cu–Mg alloys, the experimentation was carried out with different alloy samples with constant copper (Cu) and magnesium (Mg) content. Parameters such as hardness, tensile strength with yield strength and % elongation, impact energy, and microstructure were analyzed. The outcomes demonstrated that the uniform dissemination of the pistachio shell particles with the microstructure of Al–Cu–Mg/pistachio shell composite particulates is the central point liable for the enhancement of the mechanical properties. Incorporating pistachio shell particles, up to 10 wt.%, is a cost-effective reinforcement in the production of metal matrix composites for various manufacturing applications.
Om Prakash, S.Srinivasan, V.Selvaraj, Dinesh KiruphaNandhakumar, S.Dharmaraj, T.B.
Additive manufacturing (AM) is currently being used to produce many aerospace components, with its inherent design flexibility enabling an array of unique and novel possibilities. But, in order to grow the application space of polymer AM, the industry has to provide an offering with improved mechanical properties. Several entities are working toward introducing continuous fibers embedded into either a thermoplastic or thermoset resin system. This approach can enable significant improvement in mechanical properties and could be what is needed to open new and exciting applications within the aerospace industry. However, as the technology begins to mature, there are a couple of unsettled issues that are beginning to come to light. The most common question raised is whether composite AM can achieve the performance of traditional composite manufacturing. If AM cannot reach this level, is there enough application potential to warrant the development investment? The answers are highly
Hayes, MichaelMuelaner, JodyRoye, ThorstenWebb, Philip
Recycling of advanced composites made from carbon fibers in epoxy resins is required for two primary reasons. First, the energy necessary to produce carbon fibers is very high and therefore reusing these fibers could greatly reduce the lifecycle energy of components which use them. Second, if the material is allowed to break down in the environment, it will contribute to the growing presence of microplastics and other synthetic pollutants. Currently, recycling and safe methods of disposal typically do not aim for full circularity, but rather separate fibers for successive downcycling while combusting the matrix in a clean burning process. Breakdown of the matrix, without damaging the carbon fibers, can be achieved by pyrolysis, fluidized bed processes, or chemical solvolysis. The major challenge is to align fibers into unidirectional tows of real value in high-performance composites.
Muelaner, JodyRoye, Thorsten
We are in the context of the analysis of carbon fiber reinforced plastics (CFRP) high-pressure vessel (COPV - Composite Overwrapped Pressure Vessel) manufactured by filament winding (FW). Classically, the parameters of material models are identified based on flat laminate coupons with specific predetermined fiber orientations, and based on standards like the ones of ASTM relevant for flat coupons. CFRP manufactured by FW has a unique and complex laminate structure, which presents curvatures and ply interlacements. In practice, it is important to use coupons produced with the final manufacturing process for the parameter identification of the material models; if classical coupons produced by e.g. ply lamination are used, the effect of FW structure cannot be accounted for, and cannot be introduced in the material models. It is therefore essential to develop an approach to create representative flat coupons based on the FW process. In this study, a new hexagonal-shaped mandrel including
Watanabe, TakeshiBruyneel, MichaelAnantharaju, RajaneeshTsuchiyama, YusukeHuang, HsuminUrushiyama, Yuta
The aerospace industry's unceasing quest for lightweight materials with exceptional mechanical properties has led to groundbreaking advancements in material technology. Historically, aluminum alloys and their composites have held the throne in aerospace applications owing to their remarkable strength-to-weight ratio. However, recent developments have catapulted magnesium and its alloys into the spotlight. Magnesium possesses two-thirds of aluminum's density, making it a tantalizing option for applications with regard to weight-sensitive aerospace components. To further enhance magnesium's mechanical properties, researchers have delved into the realm of metal matrix composites (MMCs), using reinforcements such as Alumina, Silicon carbide, Boron carbide and Titanium carbide. However, meager information is available as regards to use of Multi-Walled Carbon Nanotubes (MWCNTs) as a reinforcement in magnesium based MMCs although, CNTs exhibit excellent stiffness coupled with very low density
Mukunda, SandeepBoppana, Satish BabuChinnakurli Suryanarayana, RameshT, AravindaKhan, Saleem
Lightweight materials are in great demand in the automotive sector to enhance system performance. The automotive sector uses composite materials to strengthen the physical and mechanical qualities of light weight materials and to improve their functionality. Automotive elements such as the body shell, braking system, steering, engine, battery, seat, dashboard, bumper, wheel, door panelling, and gearbox are made of lightweight materials. Lightweight automotive metals are gradually replacing low-carbon steel and cast iron in automobile manufacture. Aluminium alloys, Magnesium alloys, Titanium alloys, advanced high-strength steel, Ultra-high strength steel, carbon fiber-reinforced polymers, and polymer composites are examples of materials used for light weighing or automobile decreased weight. The ever-present demand for fuel-efficient and ecologically friendly transport vehicles has heightened awareness of lowering weight and performance development. Titanium alloys properties are
Ramana Murty Naidu, S. C. V.Kalidas, N.Venkatachalam, SivaramanMukuloth, SrinivasnaikAsary, Abdul RabNaveenprabhu, V.Vishnu, R.Vellingiri, Suresh
Metal matrix composite processing allows the possibility of improving both mechanical and damping properties by selecting reinforcements which have high damping characteristics, hardness and strength. In this work, the effect of disperse SiC as passive agents on the dynamic properties such as damping ratio, loss factor and effect of damping factor on Al7075/Al2O3/SiC composite machinability was studied. The composite samples were fabricated as Al7075/5%Al2O3, Al7075/5%Al2O3/5%SiC, Al7075/5%Al2O3/10%SiC and Al7075/5%Al2O3/15%SiC as well subsequently experimented. The dynamic properties were found using free vibration test approach and the hysteresis loop method. Further, the machinability in end milling operation was accessed by experimentation with the surface finish as the parameter under scrutiny. The composite Al7075/5%Al2O3/5%SiC has better damping ratio comparing to others, also the composite with the best damping capacity produces a fine surface finish during machining. Due to
Rajeswari, B.Manikandan, C.Soundararajan, R.Amirthagadeswaran, K.S.
The latest developments in composite materials are anticipated by green engineering. Materials must be eco-friendly, recyclable, biodegradable, and easy to decompose. Researchers are interested in utilizing natural fibres, fillers, and synthetic active ingredients. Natural fiber-polymer composites can specify certain mechanical properties but are hydrophilic and weak, so they rarely meet the needed thermal properties. Composite material selection depends on the application and the superior properties of the fibre/filler: banana fibre (BF), ice husk (RH) and multi-walled carbon nanotubes (MWCNT). In this research article, a brief discussion of the heat transfer mechanism of composites and the development of energy conduction equation are performed for hybrid natural polymer composite. The maximum thermal conductivity observed for 10BF/10RH/1MWCNT wt.% composite is 0.2694 W/mK. From ANSYS numerical simulation, the temperature distribution along the composite wall temperatures T1 to T8
Senthilkumar, N.Ramu, S.Deepanraj, B.
Metal Matrix Composites (MMC) made of the aluminium as base metal is now being used in diversed applications due to its extended properties. The physical, chemical, mechanical and structural properties make it as irresistible in the engineering applications. Metal Matrix Composites (MMCs) based on aluminium have increased in popular in various applications including aerospace, car, space, transportation, and undersea applications.. In this study, Al LM25/SiCp MMC was fabricated using a low-cost stir casting technique, and the weight percentage of SiCp was varied from 4% to 8% to prepare the MMC plates. The aim of the research was to investigate the mechanical properties of the specimen, including hardness, tensile, and impact tests. The microstructure of the specimens is investigated which shows the bonding between the particles which is fabricated by Stir casting method. The sample 2 has better mechanical properties when it is compared with other specimens. With the increase in the
Ram Kumar, S.Armstrong, M.Sivaneswaran, M.Surya Prakash, V.Sathya Prasad, S.Vishnu Sankar, B.P.
Fly ash is a light byproduct produced when pulverized coal is burnt in suspension-fueled furnaces in power plants. Separating the recovered fly ash from the exhaust gases. Due to its distinct physical and chemical properties, it is utilized in a wide variety of industrial and building applications. These applications include the production of cement and concrete, the stabilization of liquid waste, and hydraulic mining backfill. Fly ash has the potential to enhance the physical and mechanical properties of aluminum castings, as well as reduce their costs and increase their densities, all while lowering their prices. This research investigated the effect of fly ash incorporation on the mechanical properties of the aluminum casting alloy ZA8. Investigated were the cast and heat-treated varieties of unreinforced ZA8 and its metal matrix composite of 15% ferrous, 20% nickel, 10% fly ash, and 10% magnesium carbide. According to the results, the quantity of fly ash in the melt affected the
Dinesh Krishnaa, S.Pandiyan, ManikandaprabuBen Ruben, R.Dhiyaneswaran, J.Sanjay Kumar, S.
The requirement for lightweight, high-performance materials with higher wear resistance, which is critical in industries such as aerospace, automotive, and consumer-related sectors, has fueled the development of particle reinforced metal matrix composites (PRMCs). These materials are an appealing alternative for a broad variety of scientific and technological applications due to their remarkable mechanical qualities and low cost. The primary goal of developing metal matrix composite materials is to combine the favorable properties of metals and ceramics. This study included several experimental experiments to explore the behavior of stir-cast composites made of aluminum grade 6063 with varying amounts of SiC, Al2O3, and TiO2 reinforcements. The specimens obtained through the use of stir casting methodologies are subjected to a wide range of mechanical tests, including tensile tests, impact analyses, hardness measurements, and tribological investigations such as sliding wear tests and
Chaudhary, Amit S.Waghulde, Kishor B.Javanjal, Vijaykumar KisanSubhash, Gadhave
The aim of this research is to investigate the effect of cutting temperature on the post-machining performance of “carbon fiber-reinforced polymer” (CFRP), providing insights into how temperature variations during machining influence the material’s mechanical properties and structural integrity. First, cutting temperatures generated during machining were monitored and used to categorize specimens. These specimens were then subjected to control heating at various temperatures, simulating the range of cutting conditions. Subsequently, the heated specimens were left to cool naturally in ambient air. A comprehensive tensile experiment was conducted on these specimens to assess the impact on mechanical behavior. The tensile properties, including elastic modulus and maximum tensile stress, were analyzed and compared across the different temperature. This approach allowed for a systematic evaluation of cutting temperature’s influence on CFRP’s post-machining performance, shedding light on the
Imdadul, Haque MdAbdul, Kader MohammadHelal, Miah MdAkter, Anika Insana
The U.S. Army fields a multitude of aircraft mission design series (MDS) developed by several different original equipment manufacturers with varying mission requirements and flight profiles. The structural analysis in this work assumes the materials, tooling, skillsets, and capabilities are organically available and proper at the repair location. Army Combat Capabilities Development Command, Redstone Arsenal, Alabama The U.S. Army operates and maintains several aircraft MDS to meet the warfighter's multidomain mission. Aircraft fielded by the U.S. Army originate from multiple equipment manufacturers. These aircraft include rotary-wing configurations such as the AH-64D/E Apache, CH-47F Chinook, and H-60A/L/V/M Blackhawk aircraft which significantly vary in mission parameters and flight profiles. These aircraft contain structures made from a majority aluminum, steel, and titanium alloys which have dominated aircraft designs for much of the history of powered flight. However, the use of
The U.S. Army operates and maintains several aircraft MDS to meet the warfighter’s multidomain mission. Aircraft fielded by the U.S. Army originate from multiple equipment manufacturers. These aircraft include rotary-wing configurations such as the AH-64D/E Apache, CH-47F Chinook, and H-60A/L/V/M Blackhawk aircraft which significantly vary in mission parameters and flight profiles. These aircraft contain structures made from a majority aluminum, steel, and titanium alloys which have dominated aircraft designs for much of the history of powered flight. However, the use of advanced composite material systems such as fiberglass, carbon, and aramid fiber reinforcement with high performance epoxy resins has steadily increased to optimize structural designs and improve mission capability.
Industrialization concerns are stimulating research in development of new materials for automotive industries. Natural fibers which are available abundantly can be extracted naturally from environment. Preventing further pollutants on environment from depleting dwindling wood resources from forests and earth surface. Natural fibers are derived from renewable sources, making them environmentally friendly. Their use in composites reduces dependence on non-renewable resources and helps lower the carbon footprint of automobiles. Natural fibers, such as hemp, jute, and flax are lightweight materials. By incorporating them into polymer composites, the overall weight of automobile components can be reduced, leading to improved fuel efficiency and lower emissions. Natural fibers are generally less expensive than synthetic fibers, incorporating natural fibers into polymer composites can help reduce material costs in automobile manufacturing. Natural fiber polymer composites can be recycled at
Malkapuram, Devaiah
Aluminum is preferred as a material for matrix composites due to its high technical characteristics and low density. Due to its stiffness, specific strength, and wear resistance, MMCs are being widely used in various automotive applications. Due to its high strength and toughness, Al 7075 is a widely used heat treatable aluminum alloy. It is also used in the car and aerospace industries. B4C is a highly attractive reinforcing material due to its thermal and chemical stability. Compared to other reinforcements such as SiC and Al2O3, B4C has a higher hardness and lower density. The proposed technique is based on the L27 orthogonal array design of Taguchi. The laser cutting process was designed to optimize the input parameters of the given process, such as the cutting speed, pulse width, and frequency. The two response parameters, the surface roughness and the MRR, were then analyzed using the ANFIS technique. It was also used to find the optimal set of parameters while dealing with the
Leela Prasanna Lakshmi, S.Prahlada Rao, K
A wide range of engineering domains, such as aeronautical, automobiles, and marine, rely on the use of Metal Matrix Composites (MMC). Due to the excellent properties, such as hardness and strength, Aluminum base MMC are generally adopted in various uses. Due to the increasing number of reinforcement materials being added to the MMC, its properties are expected to improve. In this exploratory analysis, an effort was given to develop a new aluminium-based MMC. The analysis of the machinability of the composite was also performed. The process of creating a new MMC using a stir casting technique was carried out. It resulted in a better and more reinforced composite than its base materials. The reinforcement materials were fabricated using different weight combinations and process parameters, such as the temperature and duration required to stir. Due to the improved properties of the composite, the traditional machining method is not feasible for machining of these materials. Wire Electro
Natarajan, ManikandanPasupuleti, ThejasreeKumar, VKiruthika, JothiSilambarasan, RKrishnamachary, PC
Composites made of aluminium and other materials are now essential materials for a variety of engineering tasks, including those in the automotive industry. The present work reports on the machinability studies of Al 6061 hybrid metal matrix composites (HMMC). For the investigation, Al6061 alloy is reinforced with Boron carbide and Graphene nanoparticles (GNp) and the hybrid composite was prepared by stir casting under suitable conditions. The Electrical discharge machining (EDM), advanced machining process, was chosen to machine HMMC as it is difficult to machine by conventional machining. EDM machinablity studies were done on stir casted Al-B4C-GNP composites. The optimization of EDM process parameters were carried out using L27 orthogonal approach with input parameters such as pulse on time, pulse off time and peak current for the response of material removal rate (MRR) and surface roughness. To identify the significance of parameters on measured responses, the analysis of variance
Kala, K.LakshmiKrupakaran, R LGangula, Vidyasagar ReddyTarigonda, HariprasadDoddipalli, Raghurami ReddyNaidu, B. Vishnu VardhanReddy, Damodara
Innovators at NASA Johnson Space Center have developed a carbon fiber reinforced polymer (CFRP) sleeve, that, when fitted over a cylindrical Li-ion battery cell, can prevent cell-to-cell propagation by containing a thermal runaway (TR) event to the originating cell.
BAE Systems Arlington, VA 571-488-0456
Items per page:
1 – 50 of 148