Browse Topic: Additive manufacturing
Celebrating its 35th year, the National Aerospace Defense Contractors Accreditation Program (Nadcap) continues to advance quality assurance and regulatory compliance for aviation, defense, and space OEMs and suppliers. This article summarizes how Nadcap accreditation works, its benefits for manufacturers, and its role in expanding additive manufacturing through industry-wide consensus. The Nadcap program was first established in 1990 by a small group of aerospace and defense OEMs. Their goal was to create an accreditation initiative that provides a common approach to auditing the manufacturing and production processes used by companies supplying parts, components, structures, and services to major aerospace and defense OEMs. This foundation set the stage for Nadcap's continued focus on quality assurance and regulatory compliance in the industry.
The usage of additively manufactured (AM) notched components for fatigue-critical applications presents non-trivial challenges, such as the ubiquitous presence of volumetric defects in AM parts. Volumetric defects accelerate fatigue crack nucleation, impact short crack growth, and are near-impossible to fully eliminate. This study investigated the synergistic effects of volumetric defects and notch geometry on the fatigue behavior of L-PBF AlSi10Mg and 17-4 PH SS notched specimens. The criticality of the defects on fatigue behavior is investigated using a non-destructive evaluation technique. A classical linear elastic fracture mechanics (LEFM) approach was modified and used to quantify the effects of several factors including notch geometry, defects’ size, and location, on the fatigue crack initiation behavior. The modified LEFM approach utilized X-ray computed tomography data and linear elastic finite element analysis of local stresses in different notch geometries; to calculate and
After 3D printing a habitat designed for Mars and working with NASA on print material made from synthetic Moon dust, AI SpaceFactory Inc. has commercialized two separate 3D printers. The Secaucus, NJ-based company’s latest offering, Starforge, is a large-capacity 3D printer that uses innovative print material inspired by SpaceFactory’s work with NASA’s Kennedy Space Center in Florida under an Announcement of Collaboration Opportunity agreement.
Additive manufacturing (AM) is no longer just an alternative to traditional manufacturing methods; it's a transformative shift in how parts are designed, built, and qualified. With AM, engineers can create complex internal geometries, lattice structures, and multi-functional components that simply were not possible with traditional manufacturing methods. The design freedom unlocked by AM is advantageous in the next generation of naval innovation, particularly as shipbuilding programs push to meet ambitious construction goals and improve warship readiness. For suppliers, embracing AM isn't just about swapping out tools; it's about rethinking the entire design process. Working to understand and prepare for AM-driven design and qualification changes is necessary to remain competitive in future U.S. Navy shipbuilding programs. This article will explain how new standards are driving qualification, supporting U.S. Navy construction goals and fleet readiness.
MIT researchers have used 3D printing to produce self-heating microfluidic devices, demonstrating a technique which could someday be used to rapidly create cheap, yet accurate, tools to detect a host of diseases.
Bosch bolstered its 3D printing capabilities when it added a new metal 3D printer at its Nuremberg, Germany, plant earlier this year. The NXG XII 600 metal 3D printer from Nikon SLM Solutions met the supplier's need - the need for speed - as well as the non-Top Gun-related precision, flexibility and energy efficiency when manufacturing complex metal parts for its in-house and third-party customers. The Nuremberg plant invested nearly six million euros in the center, including the purchase and installation of the new metal 3D printer. Bosch claims to be the first Tier 1 automotive supplier in Europe to have a facility in this performance class.
Imagine a robot that can walk, without electronics, and only with the addition of a cartridge of compressed gas, right off the 3D printer. It can also be printed in one go, from one material.
By combining topology optimization and additive manufacturing, a team of University of Wisconsin-Madison engineers created a twisty high-temperature heat exchanger that outperformed a traditional straight channel design in heat transfer, power density and effectiveness.
3D Systems Rockhill, SC
A long-lasting, 3D-printed, adhesive-free wearable provides a more comprehensive picture of a user’s physiological state. The device, which measures water vapor and skin emissions of gases, continuously tracks and logs physiological data associated with dehydration, metabolic shifts, and stress levels.
A team of UCLA engineers and their colleagues have developed a new design strategy and 3D printing technique to build robots in one single step. The breakthrough enabled the entire mechanical and electronic systems needed to operate a robot to be manufactured all at once by a new type of 3D printing process for engineered active materials with multiple functions (also known as metamaterials). Once 3D printed, a “meta-bot” will be capable of propulsion, movement, sensing, and decision-making.
The ported shroud casing treatment for turbocharger compressors is desirable for mitigating broadband/whoosh noise and enhancing boost pressures at low to mid flow rates. Yet, it is accompanied by elevated narrowband noise at the blade-pass frequency (BPF). Compressor BPF noise occurs at high frequencies where wave propagation is often multi-dimensional, rendering traditional planar wave silencers invalid. An earlier work introduced a novel reflective high-frequency silencer (baseline) targeting BPF noise in the 8-12 kHz range using an “acoustic straightener” that promoted planar wave propagation along arrays of quarter-wave resonators (QWRs). The design, however, faced challenges with high-amplitude tonal noise generation at specific flow conditions due to flow-acoustic coupling at the opening of the QWRs, thereby compromising the noise attenuation. The current study explores two QWR interface geometries that weaken the coupling, including linear and saw-tooth ramps on the upstream
Additive manufacturing has been a game-changer in helping to create parts and equipment for the Department of Defense's (DoD's) industrial base. A naval facility in Washington state has become a leader in implementing additive manufacturing and repair technologies using various processes and materials to quickly create much-needed parts for submarines and ships. One of the many industrial buildings at the Naval Undersea Warfare Center Division, Keyport, in Washington, is the Manufacturing, Automation, Repair and Integration Networking Area Center, a large development center housing various additive manufacturing systems.
Biomedical metal implant materials are widely used in clinical applications, including dental implants, hip replacement, bone plates, and screws. However, traditional manufacturing processes face limitations in meeting customized medical needs, internal structural control, and efficient material utilization. For example, when producing complex-shaped titanium alloy parts using conventional methods, the material consumption ratio is as high as 10:1–20:1, leading to significant material waste.
A system has been developed to optimize the electrical, thermal, and mechanical behavior of 3D printed materials. University Carlos III of Madrid (UC3M), in collaboration with the University of Oxford, Imperial College London, and the BC Materials research center in the Basque Country, has developed an innovative computational model that makes it possible to predict and improve the behavior of multifunctional structures manufactured using 3D printers.
An industry-academia collaboration to advance sustainable bioprocessing through innovative materials for additive manufacturing, also known as 3D printing, has been announced by Innovate UK (IUK), as part of the “Sustainable Medicines Manufacturing Innovation: Collaborative R&D Fund.”
In February, the Joint Interagency Field Experimentation (JIFX) team at the Naval Postgraduate School (NPS) executed another highly collaborative week of rapid prototyping and defense demonstrations with dozens of emerging technology companies. Conducted alongside NPS’ operationally experienced warfighter-students, the event is a win-win providing insight to accelerate potential dual-use applications.
The promise of additive manufacturing (AM) in the medical device industry has always been clear, the ability to create intricate geometries, patient-specific implants, and previously impossible structures. The reality, however, is far less inspiring. Often, manufacturers believe they are designing for AM, but in truth, most have only scratched the surface of what is possible. They are working within the confines of traditional design principles and are often defaulting to software-driven solutions, believing these tools will carry them across the finish line.
Items per page:
50
1 – 50 of 1072