Browse Topic: Systems engineering
To facilitate the construction of a robust transport infrastructure, it is essential to implement a digital transformation of the current highway system. The concept of digital twins, which are virtual replicas of physical assets, offers a novel approach to enhancing the operational efficiency and predictive maintenance capabilities of highway networks. The present study begins with an exhaustive examination of the demand for the smart highway digital twin model, underscoring the necessity for a comprehensive framework that addresses the multifaceted aspects of digital transformation. The framework, as proposed, is composed of six integral components: spatiotemporal data acquisition and processing, multidimensional model development, model integration, application layer construction, model iteration, and model governance. Each element is critical in ensuring the fidelity and utility of the digital twin, which must accurately reflect the dynamic nature of highway systems. The
Systems Engineering is a method for developing complex products, aiming to improve cost and time estimates and ensure product validation against its requirements. This is crucial to meet customer needs and maintain competitiveness in the market. Systems Engineering activities include requirements, configuration, interface, deadlines, and technical risks management, as well as definition and decomposition of requirements, implementation, integration, and verification and validation testing. The use of digital tools in Systems Engineering activities is called Model-Based Systems Engineering (MBSE). The MBSE approach helps engineers manage system complexity, ensuring project information consistency, facilitating traceability and integration of elements throughout the product lifecycle. Its benefits include improved communication, traceability, information consistency, and complexity management. Major companies like Boeing already benefit from this approach, reducing their product
Emergence of Software Defined Vehicles (SDVs) presents a paradigm shift in the automotive domain. In this paper, we explore the application of Model-Based Systems Engineering (MBSE) for comprehensive system simulation within the SDV architecture. The key challenge for developing a system model for SDV using traditional methods is the document centric approach combined with the complexity of SDV. This MBSE approach can help to reduce the complexity involved in Software-Defined Vehicle Architecture making it more flexible, consistent, and scalable. The proposed approach facilitates the definition and analysis of functional, logical, and physical architecture enabling efficient feature and resource allocation and verification of system behaviour. It also enables iterative component analysis based on performance parameters and component interaction analysis (using sequence diagrams).
Today's battery management systems include cloud-based predictive analytics technologies. When the first data is sent to the cloud, battery digital twin models begin to run. This allows for the prediction of critical parameters such as state of charge (SOC), state of health (SOH), remaining useful life (RUL), and the possibility of thermal runaway events. The battery and the automobile are dynamic systems that must be monitored in real time. However, relying only on cloud-based computations adds significant latency to time-sensitive procedures such as thermal runaway monitoring. Because automobiles operate in various areas throughout the intended path of travel, internet connectivity varies, resulting in a delay in data delivery to the cloud. As a result, the inherent lag in data transfer between the cloud and cars challenges the present deployment of cloud-based real-time monitoring solutions. This study proposes applying a thermal runaway model on edge devices as a strategy to reduce
Researchers at the Johns Hopkins Applied Physics Laboratory have developed a machine learning method that could have a huge impact on understanding how material is formed during the additive manufacturing process. John Hopkins Applied Physics Laboratory, Laurel, MD Researchers at the Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland, have demonstrated a novel approach for applying machine learning to predict microstructures produced by a widely used additive manufacturing technique. Their approach promises to dramatically reduce the time and cost of developing materials with tailored physical properties and will soon be implemented on a NASA-funded effort focused on creation of a digital twin. “We anticipate that this new approach will be extremely impactful in helping design and understand material formation during additive manufacturing processes, and this fits into our overarching strategy focused on accelerating materials development for national security,” said
Virtualization features such as digital twins and virtual patching can accelerate development and make commercial vehicles more agile and secure. There is one sure-fire way to secure commercial vehicles from cyber-attacks. “You just remove the connectivity,” quipped Brandon Barry, CEO of Block Harbor Cybersecurity and the moderator of a panel session on “cybersecurity of virtual machines” at the SAE COMVEC 2024 conference in Schaumburg, Illinois. Obviously, that train has left the station - commercial vehicles of all types, including trains, are only becoming more automated and connected, which increases the risks for cyber-attacks. “We have very connected vehicles, so attacks can be posed not just through powertrain solutions but also through telemetry, infotainment systems connected to different applications and services, and also through cloud platforms,” said Trisha Chatterjee, current product support and data specialist for fuel cell and hydrogen technology at Accelera by Cummins.
Northrop Grumman San Diego, CA jacqueline.rainey@ngc.com
Researchers have developed a new method for predicting what data wireless computing users will need before they need it, making wireless networks faster and more reliable. The new method makes use of a technique called a “digital twin,” which effectively clones the network it is supporting.
Researchers at the Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland, have demonstrated a novel approach for applying machine learning to predict microstructures produced by a widely used additive manufacturing technique. Their approach promises to dramatically reduce the time and cost of developing materials with tailored physical properties and will soon be implemented on a NASA-funded effort focused on creation of a digital twin.
Heather Cummings, a 27-year old senior flight controls and autonomy engineer at Sikorsky, is the winner of the Aerospace/Defense category for SAE Media Group's inaugural Women in Engineering: Rising Star Awards program. In addition to her role developing flight control software and improving Sikorsky's Innovations department's processes for software and model-based systems engineering, she is also a pilot. Among her career accomplishments at Sikorsky include leading the flight controls software development and flight testing program on a technology demonstrator aircraft for autonomy and reduced crew operations. The project involved Heather dividing up sub-tasks for the project and working with each individual on the team to mentor them on the engineering skills necessary for completion. She also served as the onboard flight test engineer for the project. One of her career goals is to serve as the lead engineer on new technologies that form the next generation of semi and fully
Effective thermal management is crucial for vehicles, impacting both passenger comfort and safety, as well as overall energy efficiency. Electric vehicles (EVs) are particularly sensitive to thermal considerations, as customers often experience range anxiety. Improving efficiency not only benefits customers by extending vehicle range and reducing operational costs but also provides manufacturers with a competitive edge and potential revenue growth. Additionally, efficient thermal management contributes to minimizing the environmental impact of the vehicle throughout its lifespan. Digital twins have gained prominence across various industries due to their ability to accelerate development while minimizing testing costs. Some applications have transitioned to comprehensive three-dimensional models, while others employ model reduction techniques or hybrid approaches that combine different modeling methods. The discovery of unknown working mechanisms, more efficient and effective control
In the early 2010s, LightSquared, a multibillion-dollar startup promising to revolutionize cellular communications, declared bankruptcy. The company couldn't figure out how to prevent its signals from interfering with those of GPS systems. Now, Penn Engineers have developed a new tool that could prevent such problems from ever happening again: an adjustable filter that can successfully prevent interference, even in higher-frequency bands of the electromagnetic spectrum.
A company says that its digital twin alignment system, incorporating a sophisticated AI algorithm and an off-the-shelf camera, has the potential to revolutionize the auto industry, potentially saving it up to a staggering $20 billion in the effort to detect defects on the manufacturing line. Generally, such inspections of spot welds, bolt holes and the like are handled one of three ways: Slow manual inspections that can have high error rates. Even slower inspection with coordinate-measuring machines (CMMs) that can take hours to inspect 150 spot welds. Tremendously expensive technology, such as lasers, that still aren't perfect.
Items per page:
50
1 – 50 of 1495