Browse Topic: Prostheses and implants
Brain-machine interfaces (BMIs) have emerged as a promising solution for restoring communication and control to individuals with severe motor impairments. Traditionally, these systems have been bulky, power-intensive, and limited in their practical applications. Researchers at EPFL have developed the first high-performance, miniaturized brain-machine interface (MiBMI), offering an extremely small, low-power, highly accurate, and versatile solution
Researchers have now developed the first hydrogel implant designed for use in fallopian tubes. This innovation performs two functions: one is to act as a contraceptive, the other is to prevent the recipient from developing endometriosis in the first place or to halt the spread if they do
Researchers have shown that twisted carbon nanotubes can store three times more energy per unit mass than advanced lithium-ion batteries. The finding may advance carbon nanotubes as a promising solution for storing energy in devices that need to be lightweight, compact, and safe, such as medical implants and sensors
Borophene is more conductive, thinner, lighter, stronger, and more flexible than graphene, the 2D version of carbon. Now, researchers have made the material potentially more useful by imparting chirality — or handedness — on it, which could make for advanced sensors and implantable medical devices. The chirality, induced via a method never before used on borophene, enables the material to interact in unique ways with different biological units such as cells and protein precursors
Small wearable or implantable electronics could help monitor our health, diagnose diseases, and provide opportunities for improved, autonomous treatments. But to do this without aggravating or damaging the cells around them, these electronics will need to not only bend and stretch with our tissues as they move, but also be soft enough that they will not scratch and damage tissues
A research team at RCSI University of Medicine and Health Sciences has developed a new implant that conveys electrical signals and may have the potential to encourage nerve cell (neuron) repair after spinal cord injury
For engineers working on soft robotics or wearable devices, keeping things light is a constant challenge: heavier materials require more energy to move around, and — in the case of wearables or prostheses — cause discomfort. Elastomers are synthetic polymers that can be manufactured with a range of mechanical properties, from stiff to stretchy, making them a popular material for such applications. But manufacturing elastomers that can be shaped into complex 3D structures that go from rigid to rubbery has been unfeasible until now
Implants that steadily release the right dose of a drug directly to the target part of the body have been a major advance in drug delivery. However, they still face some key challenges, such as ensuring that the drug is released at a constant rate from the moment it is implanted and ensuring that the implant is soft and flexible enough to avoid tissue damage but tough enough not to rupture. One particular challenge is to avoid triggering the foreign body response, which is when the patient’s body encloses the implant in a tight capsule of tough connective tissue which can slow the drug’s release or prevent it from diffusing out
Chalmers University of Technology Gothenburg, Sweden
A new device platform allows for smaller wireless light sources to be placed within the human body. Research indicates that such light sources will enable novel, minimally invasive means of treating and better understanding diseases which currently require the implantation of bulky devices
Daegu Gyeongbuk Institute of Science and Technology Daegu, Republic of Korea
Recent advances in technology have opened many possibilities for using wearable and implantable sensors to monitor various indicators of patient health. Wearable pressure sensors are designed to respond to very small changes in bodily pressure, so that physical functions such as pulse rate, blood pressure, breathing rates, and even subtle changes in vocal cord vibrations can be monitored in real time with a high degree of sensitivity
As medical devices in today’s modern medicine continue to advance, they require power supplies that allow them to perform an ever-widening roles. These lightweight, wearable — and even implantable — medical devices comprise everything from activity/exercise watches, hearing aids, and medical call buttons to pacemakers, insulin pump monitors, and neuro- or gastric stimulators, as well as implantable cardiac pacemakers and defibrillators (ICDs). The rechargeable batteries used in these devices must provide for such vital functions as monitoring, signal processing, collecting and transmitting data, and providing specialized electronic pulses when needed to stimulate cardiac output and other physiological activity
In the intricate world of orthopedic device manufacturing, precision quality isn’t just a requirement, it’s the cornerstone of life-changing patient outcomes. SpiTrex Orthopedics, a global leader in medical device contract manufacturing, specializes in implants for the spine, trauma, and extremity markets (Spi.Tr.Ex.), including spinal rods, cross connectors, hooks, and a variety of stateof-the-art screws, nails, and plates. The company has a multi-site smart factory manufacturing footprint across North America and Europe
Washington State University Pullman, WA
Robotics, prostheses that react to touch, and health monitoring are three fields in which scientists are working to develop electronic skin. Researchers have developed a sensor that, similar to human skin, can sense temperature variation that originates from the touch of a warm object as well as the heat from solar radiation. The sensor combines pyroelectric and thermoelectric effects with a nano-optical phenomenon
Researchers have created a new technique to treat Type 1 diabetes: implanting a device inside a pocket under the skin that can secrete insulin while avoiding the immunosuppression that typically stymies management of the disease. The approach would offer an easier, long-term, and less-invasive alternative to insulin injections or traditional transplants that require immunosuppression
A neural implant provides information about activity deep inside the brain while sitting on its surface. The implant is made up of a thin, transparent, and flexible polymer strip that is packed with a dense array of graphene electrodes. The technology, tested in transgenic mice, brings the researchers a step closer to building a minimally invasive brain-computer interface (BCI) that provides high-resolution data about deep neural activity by using recordings from the brain surface
A novel surgical implant developed by Washington State University researchers was able to kill 87 percent of the bacteria that cause staph infections in laboratory tests, while remaining strong and compatible with surrounding tissue like current implants
“Soft robots,” medical devices and implants, and next-generation drug delivery methods could soon be guided with magnetism — thanks to a metal-free magnetic gel developed by researchers at the University of Michigan and the Max Planck Institute for Intelligent Systems in Stuttgart, Germany
Researchers have created electrostatic materials that function even with extremely weak ultrasound, heralding the era of permanent implantable electronic devices in biomedicine. Recent research explores implantable medical devices that operate wirelessly, yet finding a safe energy source and protective materials remains challenging. Presently, titanium (Ti) is used due to its biocompatibility and durability. However, radio waves cannot pass through this metal, necessitating a separate antenna for wireless power transmission. Consequently, this enlarges the device size, creating more discomfort for patients
A new collaboration between The University of Manchester and CICECO-Aveiro Institute of Materials could transform the field of biomedical implants
Researchers have developed an implantable device that could provide a long-term supply of insulin to the body. The implant was designed to shield insulin-producing, or islet, cells from damaging immune responses, while continuously generating oxygen to sustain them. The results of a study show that transplanted cells within the device were able to survive and produce insulin in animals over the course of one month
A microprinter can print piezoelectric films 100 times faster for the production of microelectromechanical systems (MEMS) for sensors, wearable, or implantable medical devices, offering the possibility to lower the mass production costs
A microscale device for implantation in the eye presents new opportunities for cell-based treatment of diabetes and other diseases. The 3D printed device aims to encapsulate insulin-producing pancreatic cells and electronic sensors
A new soft sensor developed by UBC and Honda researchers opens the door to a wide range of applications in robotics and prosthetics. When applied to the surface of a prosthetic arm or a robotic limb, the sensor skin provides touch sensitivity and dexterity, enabling tasks that can be difficult for machines such as picking up a piece of soft fruit. The sensor is also soft to the touch, like human skin, which helps make human interactions safer and more lifelike
A novel aero-elastic pressure sensor, called eAir can be applied to minimally invasive surgeries and implantable sensors by directly addressing the challenges associated with existing pressure sensors
A minimally invasive and smart glaucoma implant has the potential to decrease the incidence of postoperative complications. The biodegradable glaucoma implant is approximately the same size as the world’s smallest medical device known to be implanted in the human body
Research teams at University of Galway and MIT have detailed a new breakthrough in medical device technology that could lead to intelligent, long-lasting, tailored treatment for patients thanks to soft robotics and artificial intelligence
Therapy developers are being asked to consider ways to deliver drugs for a longer time period with a single dose. This has spurred innovation in both the oral and parenteral spaces, but the greatest potential for long-acting delivery remains in implantable systems. Because of this, growth for the global implantable drug-delivery market is forecast at 10 percent annually in coming years with an expectation for the market to reach nearly $30 billion (USD) by 2025.1 Contraceptive, ophthalmic, cardiovascular, diabetes, oncology, and autoimmune disease applications are all likely to focus on development of these therapeutic forms
A team of scientists — led by Yamin Zhang, PhD, and Colin Franz, MD, PhD, at Shirley Ryan Ability Lab and John Rogers, PhD, at Northwestern University — has developed novel technology with the potential to change the future of drug delivery
With the goal of tackling the need for prosthetic devices and their associated care, Denver-based medical device company Xtremity has developed thermoformable socket technology and cost-efficient fabrication processes that aim to have an impact on individuals with transtibial limb loss/difference, as well as the prosthetists who help them
Houston Methodist nanomedicine researchers have found a way to tame pancreatic cancer — one of the most aggressive and difficult to treat cancers — by delivering immunotherapy directly into the tumor with a device that is smaller than a grain of rice
Medical device technology is continually advancing and helping shape the future of healthcare. It is used in every area of the industry, from simple remote patient monitoring like smart watches to sophisticated implantable equipment like pacemakers and cochlear hearing devices. Its importance is evident with the global medical electronics market size evaluated at USD $101.06 billion in 2022 with growth projections anticipating $248.43 billion by 2032.1
NeuralTree, a closed-loop neuromodulation system-on-chip that can detect and alleviate disease symptoms, has been developed by researchers Mahsa Shoaran and Stéphanie Lacour at Swiss Federal Institute of Technology Lausanne (EPFL
Researchers have combined low power chip design, machine learning algorithms, and soft implantable electrodes to produce a neural interface that can identify and suppress symptoms of various neurological disorders
Surgical site infections are one of the most common medical infections, occurring in 2–4 percent of patients post-surgery. For some procedures, such as vaginal mesh implants to treat prolapse, infection rates can be much higher, leading to a ban on that procedure in 2018 in Australia
SMARTSHAPE consortium, led from University of Galway, will develop an implantable medical device for continuous blood pressure monitoring. The consortium has developed an IP-protected technologically disruptive sensor for continuous pressure measurement. They plan to address challenges related to biocompatibility, longevity, and delivery to the target tissue. These need to be overcome to deliver the sensor to the market
A team of engineers and clinicians has developed an ultra-thin, inflatable device that can be used to treat the most severe forms of pain without the need for invasive surgery. The device, developed by researchers at the University of Cambridge, uses a combination of soft robotic fabrication techniques, ultra-thin electronics, and microfluidics
A new string-like implant can monitor fluctuations in brain chemicals, like a fitness tracker for the brain
Nine out of 10 amputees in the world don't have access to a proper prosthetic. The startup company, LIMBER Prosthetics & Orthotics, Inc. aims to do something to address this problem by 3D printing complete one-piece structurally sound prosthetic limbs
In the future, soft robotic hands with advanced sensors could help diagnose and care for patients or act as more lifelike prostheses
Using a simple set of magnets, researchers have devised a sophisticated way to monitor muscle movements, which they hope will make it easier for people with amputations to control their prosthetic limbs. The researchers have demonstrated the accuracy and safety of their magnet-based system, which can track the length of muscles during movement. The studies, performed in animals, offer hope that this strategy could be used to help people with prosthetic devices control them in a way that more closely mimics natural limb movement
A fully rubbery stretchable diode maintains performance. Flexible devices can behave more like biological tissue, allowing for better bio-integrated devices. An example may be a soft patch device that could be implanted on the heart
A new remotely controlled drug-delivery implant could one day provide extended, adjustable medication for patients who need daily medicine but lack medical access — even those on spacecraft headed for Mars. Houston Methodist Research Institute researchers have developed such an implant. They are leveraging the International Space Station (ISS) National Laboratory to test the implant’s ability to be controlled in space from a device on Earth
Upper-limb forequarter amputations that involve the removal of the entire arm and scapula require highly customized prosthetic devices that are expensive but yet usually underutilized due to their high maintenance and low comfort levels. At the same time, while cosmetic prostheses — artificial limbs that provide patients the appearance of a pre-amputated body part — have a higher rate of continuous use, they have limitations in functional use
Tiotronik’s Renamic Neo communicates with a medical device implanted in a patient, such as a pacemaker, ICD, or implantable cardiac monitor. The control unit received FDA premarket approval in April 2022. The privately owned medtech company has been developing medical devices that improve the quality of life of patients suffering from cardiovascular and endovascular diseases for more than 50 years
Items per page:
50
1 – 50 of 679