Browse Topic: Optics
Measuring the volume of harvested material behind the machine can be beneficial for various agricultural operations, such as baling, dropping, material decomposition, cultivation, and seeding. This paper aims to investigate and determine the volume of material for use in various agricultural operations. This proposed methodology can help to predict the amount of residue available in the field, assess field readiness for the next production cycle, measure residue distribution, determine hay readiness for baling, and evaluate the quantity of hay present in the field, among other applications which would benefit the customer. Efficient post-harvest residue management is essential for sustainable agriculture. This paper presents an Automated Offboard System that leverages Remote Sensing, IoT, Image Processing, and Machine Learning/Deep Learning (ML/DL) to measure the volume of harvested material in real-time. The system integrates onboard cameras and satellite imagery to analyze the field
Virtual reality (VR), Augmented Reality (AR) and Mixed reality (MR) are advanced engineering techniques that coalesces physical and digital world to showcase better perceiving. There are various complex physics which may not be feasible to visualize using conventional post processing methods. Various industrial experts are already exploring implementation of VR for product development. Traditional computational power is improving day-by-day with new additional features to reduce the discrepancy between test and CFD. There has been an increase in demand to replace actual tests with accurate simulation approaches. Post processing and data analysis are key to understand complex physics and resolving critical failure modes. Analysts spend a considerable amount of time analyzing results and provide directions, design changes and recommendations. There is a scope to utilize advanced features of VR, AR and MR in CFD post process to find out the root cause of any failures occurred with
This document establishes re-certification guidelines applicable to fiber optic fabricator technical training for individuals involved in the manufacturing, installation, support, integration and testing of fiber optic systems. Applicable personnel include: Managers Engineers Technicians Trainers/Instructors Third Party Maintenance Agencies Quality Assurance Production
In view of the complexity of railway engineering structure, the systematicness of professional collaboration and the high reliability of operation safety, this paper studied the spatial-temporal information data organization model with all elements in whole domain for Shuozhou-Huanghua Railway from the aspect of Shuozhou-Huanghua Railway spatial-temporal information security. Taking the unique spatial-temporal benchmark as the main line, the paper associated different spatial-temporal information to form an efficient organization model of Shuozhou-Huanghua Railway spatial-temporal information with all elements in the whole domain, so as to implement the effective organization of massive spatial-temporal information in various specialties and fields of Shuozhou-Huanghua Railway; By using GIS (Geographic Information System) visualization technology, spatial analysis technology and big data real-time dynamic rendering technology, it was realized the real-time dynamic visualization display
The usage of additively manufactured (AM) notched components for fatigue-critical applications presents non-trivial challenges, such as the ubiquitous presence of volumetric defects in AM parts. Volumetric defects accelerate fatigue crack nucleation, impact short crack growth, and are near-impossible to fully eliminate. This study investigated the synergistic effects of volumetric defects and notch geometry on the fatigue behavior of L-PBF AlSi10Mg and 17-4 PH SS notched specimens. The criticality of the defects on fatigue behavior is investigated using a non-destructive evaluation technique. A classical linear elastic fracture mechanics (LEFM) approach was modified and used to quantify the effects of several factors including notch geometry, defects’ size, and location, on the fatigue crack initiation behavior. The modified LEFM approach utilized X-ray computed tomography data and linear elastic finite element analysis of local stresses in different notch geometries; to calculate and
This paper presents the development of an alternative to the traditional multichannel Fiber Optic Rotary Joint (FORJ) using spatial division multiplexing. The proposed solution utilizes phase plates assembly in a compact housing made by a French optical communications company called Cailabs. It is distinguished from conventional multichannel technologies that rely on Dove prisms or wavelength multiplexing by using the housing of a single channel Fiber Optic Rotary Joint (FORJ) without needing strong constraint on the choice of optical transceivers. Our research focused on characterizing the specific mechanical parameters required to transfer optical modes from the rotor to the stator without deformation or misalignment of those. Three test campaigns were conducted, each with iterative improvements. The latest results demonstrate commercially viable performance for transmission of 3G-SDI video stream on up to 6 channels.
Data security remains an issue of the utmost concern in contested environments. Mechanisms such as data encryption, beam-forming antennas, and frequency-hopping radio have emerged to mitigate some of the concerns in radio-frequency (RF) communications, but they do not remove all risk. Consequently, there is still a consistent appetite for alternative solutions. This paper presents a case for the use of the free-space optical (FSO) communications technology ImpLi-Fi as one such alternative. FSO communication is promising because of the ease with which the signal beam may be steered and limited, making detection and interception more difficult than with RF, and ImpLi-Fi in particular is desirable for its exceptional outdoor performance and ease of integration into existing light sources. The paper briefly illustrates the origins of the contested logistics (CL) problem and CL use cases for secure communication channels, before describing the ImpLi-Fi technology in some detail; exploring
The Vision for Off-road Autonomy (VORA) project used passive, vision-only sensors to generate a dense, robust world model for use in off-road navigation. The research resulted in vision-based algorithms applicable to defense and surveillance autonomy, intelligent agricultural applications, and planetary exploration. Passive perception for world modeling enables stealth operation (since lidars can alert observers) and does not require more expensive or specialized sensors (e.g., radar or lidar). Over the course of this three-phase program, SwRI built components of a vision-only navigation pipeline and tested the result on a vehicle platform in an off-road environment.
Items per page:
50
1 – 50 of 10095