Browse Topic: Optics
In this article we will discuss the development and implementation of a computer vision system to be used in decision-making and control of an electro-hydraulic mechanism in order to guarantee correct functioning and efficiency during the logistics project. To achieve this, we have brought together a team of engineering students with knowledge in the area of Artificial Intelligence, Front End and mechanical, electrical and hydraulic devices. The project consists of installing a system on a forklift that moves packaged household appliances that can identify and differentiate the different types of products moved in factories and distribution centers. Therefore, the objective will be to process this identification and control an electro-hydraulic pressure control valve (normally controlled in PWM) so that it releases only the hydraulic pressure configured for each type of packaging/product, and thus correctly squeezing (compressing) the specific volume, without damaging it due to
Innovators at NASA Johnson Space Center have developed a technology that can isolate a single direction of tensile strain in biaxially woven material. This is accomplished using traditional digital image correlation (DIC) techniques in combination with custom red-green-blue (RGB) color filtering software. DIC is a software-based method used to measure and characterize surface deformation and strain of an object. This technology was originally developed to enable the extraction of circumferential and longitudinal webbing strain information from material comprising the primary restraint layer that encompasses inflatable space structures.
NASA’s Glenn Research Center has developed a method of using entangled-photon pairs to produce highly secure mobile communications that require mere milliwatts of power. Conventional gas Argon-ion laser sources are too large, expensive, and power-intensive to use in portable applications. By contrast, Glenn’s patented optical quantum communication method produces entangled-photon pairs approximately a million times more efficiently than conventional sources, in a system that is small and light enough to be portable.
Planetary and lunar rover exploration missions can encounter environments that do not allow for navigation by typical, stereo camera-based systems. Stereo cameras meet difficulties in areas with low ambient light (even when lit by floodlights), direct sunlight, or washed-out environments. Improved sensors are required for safe and successful rover mobility in harsh conditions. NASA Goddard Space Flight Center has developed a Space Qualified Rover LiDAR (SQRLi) system that will improve rover sensing capabilities in a small, lightweight package. The new SQRLi package is developed to survive the hazardous space environment and provide valuable image data during planetary and lunar rover exploration.
In the race toward practical quantum computers and networks, photons — fundamental particles of light — hold intriguing possibilities as fast carriers of information at room temperature. Photons are typically controlled and coaxed into quantum states via waveguides on extended microchips, or through bulky devices built from lenses, mirrors, and beam splitters. The photons become entangled — enabling them to encode and process quantum information in parallel — through complex networks of these optical components. But such systems are notoriously difficult to scale up due to the large numbers and imperfections of parts required to do any meaningful computation or networking.
Virtual reality (VR), Augmented Reality (AR) and Mixed reality (MR) are advanced engineering techniques that coalesces physical and digital world to showcase better perceiving. There are various complex physics which may not be feasible to visualize using conventional post processing methods. Various industrial experts are already exploring implementation of VR for product development. Traditional computational power is improving day-by-day with new additional features to reduce the discrepancy between test and CFD. There has been an increase in demand to replace actual tests with accurate simulation approaches. Post processing and data analysis are key to understand complex physics and resolving critical failure modes. Analysts spend a considerable amount of time analyzing results and provide directions, design changes and recommendations. There is a scope to utilize advanced features of VR, AR and MR in CFD post process to find out the root cause of any failures occurred with
Measuring the volume of harvested material behind the machine can be beneficial for various agricultural operations, such as baling, dropping, material decomposition, cultivation, and seeding. This paper aims to investigate and determine the volume of material for use in various agricultural operations. This proposed methodology can help to predict the amount of residue available in the field, assess field readiness for the next production cycle, measure residue distribution, determine hay readiness for baling, and evaluate the quantity of hay present in the field, among other applications which would benefit the customer. Efficient post-harvest residue management is essential for sustainable agriculture. This paper presents an Automated Offboard System that leverages Remote Sensing, IoT, Image Processing, and Machine Learning/Deep Learning (ML/DL) to measure the volume of harvested material in real-time. The system integrates onboard cameras and satellite imagery to analyze the field
Healthcare data is growing at a faster rate compared to any other industry globally. This data, which plays an instrumental role in patient diagnosis, comes from diverse medical sources, which include magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET), genomics, proteomics, wearable sensor streams and electronic health records (EHRs) that vary in structure. Since the data sets differ from each other and have multiple dimensions, they can be hard to interpret in clinical settings, especially when putting together details from different formats.
A noninvasive imaging system combines two advanced techniques to examine both the structure and chemical composition of skin cancers. This approach could improve how doctors diagnose and classify skin cancer and how they monitor treatment responses.
This document establishes re-certification guidelines applicable to fiber optic fabricator technical training for individuals involved in the manufacturing, installation, support, integration and testing of fiber optic systems. Applicable personnel include: Managers Engineers Technicians Trainers/Instructors Third Party Maintenance Agencies Quality Assurance Production
Items per page:
50
1 – 50 of 10122