Browse Topic: Optics

Items (10,122)
Nanosilica-treated fabrics have a variety of properties, such as durability, water resistance, and specific surface characteristics. Due to that, many applications of those components are highlighted in literature. Some examples include waterproofing and water repellency, stain resistance, flame retardancy, improved durability, UV protection, improved comfort, antimicrobial properties, and textile coatings for electronics. These applications demonstrate how nanosilica-based treatments can enhance the performance of fabrics, making them more suitable for various specialized uses. In this work, a technical fabric with a mesh opening of 45 μm and an open area of 29.6% was surface treated. The treatments were performed by the dip-coating method using poly(dimethylsiloxane) (PDMS) and nanosilica at different concentrations. Optical microscopy (OM) images of the fabrics’ surface and water contact angle (WCA) measurements were carried out before and after the fabrics’ treatments. The results
Kerche, Eduardo FischerLeal, DéboraRomano, PauloOliveira, ViníciusPolkowski, Rodrigo
The application of Thermal Barrier Coatings (TBC) has been widely utilized in aerospace turbines to enhance the operational temperature and thermal efficiency of titanium alloys, while preserving their properties such as low density, creep resistance, and corrosion resistance. TBC systems typically consist of a metallic substrate, a metallic coating (Bond Coat), a thermally grown oxide (TGO), and a ceramic topcoat (TC). This study investigated the fracture surface characteristics of Ti-6Al-4V with TBC after a creep test at a constant temperature of 600 °C, under stress levels of 125, 222, and 319 MPa, in order to understand the mechanisms involved. The TBC was composed of a NiCrAlY (BC) and a zirconia co-doped with yttria and nióbia (TC). The fracture characterization of the alloy after the creep test was conducted through stereoscopy and scanning electron microscopy. The fracture mechanism at 600 °C and 222 MPa was predominantly ductile, as evidenced by the presence of dimples and
Takahashi, Renata Jesuinade Assis, João Marcos KruszynskiRodrigues, Bianca Costade Andrade Acevedo Jimenez, Laila RibeiroReis, Danieli Aparecida Pereira
The mobility electrification process is currently of great interest due to its environmental appeal, but it is accompanied by new technical requirements for vehicle systems, the powertrain being one of those with the most significant trade-offs to be solved. Higher power densities, higher torque efficiency and lower noise and vibration generation are simultaneously required. The literature shows that the manufacturing chain can influence the final state of surface integrity of a part, which affects the operational behavior and service life of a component. Therefore, a customized transmission system design for electric propulsion requires several analyses, from the raw material to the gear manufacturing processes, so that surface integrity plays a significative role in the required performance. From the perspective of their capability to meet the e-mobility requirements in terms of surface integrity is essential to conduct a comparative analysis of gear manufacturing processes. So, the
Gomes, Caio F. S.Gomes, Gilberto M. O.Colombo, Tiago C. A.Rego, Ronnie R.Michelotti, Alvaro C.Berto, Lucas F.
Particulate matter (PM), mainly its finer fraction, is among the main atmospheric pollutants present in an urban environment. The relationship between the increase in the concentration of this pollutant and the harm to human health is well established. The main sources of particulate matter in urban areas are mobile sources, which include the exhaust emission from light duty vehicles. This work measured the emission of PM in three light duty passenger vehicles, characterizing it in terms of emitted mass in one “flex” vehicle with port fuel (indirect) injection (PFI), using ethanol and gasohol (mixture of 22% anhydrous ethanol and 78% gasoline, by volume), in another “flex” vehicle with direct fuel injection (GDI), and in a diesel vehicle. In addition to mass measurement, images of the filters used in PM sampling were produced using scanning electron microscopy. The processing of these images made it possible to determine the average PM size, as well as establish a particle size
Borsari, VanderleiNeto, Edson Elpídiode Abrantes, Rui
In this article we will discuss the development and implementation of a computer vision system to be used in decision-making and control of an electro-hydraulic mechanism in order to guarantee correct functioning and efficiency during the logistics project. To achieve this, we have brought together a team of engineering students with knowledge in the area of Artificial Intelligence, Front End and mechanical, electrical and hydraulic devices. The project consists of installing a system on a forklift that moves packaged household appliances that can identify and differentiate the different types of products moved in factories and distribution centers. Therefore, the objective will be to process this identification and control an electro-hydraulic pressure control valve (normally controlled in PWM) so that it releases only the hydraulic pressure configured for each type of packaging/product, and thus correctly squeezing (compressing) the specific volume, without damaging it due to
Furquim, Bruno BuenoPivetta, Italo MeneguelloIbusuki, Ugo
Traffic flow prediction is the core challenge of transportation, and its key lies in effectively capturing the spatio-temporal dynamic dependencies. Aiming at the deficiencies of existing methods in modeling global temporal relations and dynamic spatial heterogeneity, this paper proposes a dynamic graph convolutional recurrent network (DGCRN) based on interactive progressive learning. First, the interactive progressive learning module (IPL) is designed to segment the input sequences through a tree structure, synchronize the extraction of spatiotemporal features using the interactive learning of parity subsequences, and adaptively capture the dynamic associations among nodes by combining with the dynamic graph convolutional recursive module (DGCRM). Secondly, a spatio-temporal embedding generator (STEG) is constructed to fuse temporal and spatial embedding to generate dynamic graph structures. Experiments validate the effectiveness of DGCRN on the PEMS04 and PEMS08 datasets with MAE
Su, JiangfengXie, ZilongLiu, ChunyaHe, LanKou, YujiaoXue, Xue
Innovators at NASA Johnson Space Center have developed a technology that can isolate a single direction of tensile strain in biaxially woven material. This is accomplished using traditional digital image correlation (DIC) techniques in combination with custom red-green-blue (RGB) color filtering software. DIC is a software-based method used to measure and characterize surface deformation and strain of an object. This technology was originally developed to enable the extraction of circumferential and longitudinal webbing strain information from material comprising the primary restraint layer that encompasses inflatable space structures.
NASA’s Glenn Research Center has developed a method of using entangled-photon pairs to produce highly secure mobile communications that require mere milliwatts of power. Conventional gas Argon-ion laser sources are too large, expensive, and power-intensive to use in portable applications. By contrast, Glenn’s patented optical quantum communication method produces entangled-photon pairs approximately a million times more efficiently than conventional sources, in a system that is small and light enough to be portable.
Planetary and lunar rover exploration missions can encounter environments that do not allow for navigation by typical, stereo camera-based systems. Stereo cameras meet difficulties in areas with low ambient light (even when lit by floodlights), direct sunlight, or washed-out environments. Improved sensors are required for safe and successful rover mobility in harsh conditions. NASA Goddard Space Flight Center has developed a Space Qualified Rover LiDAR (SQRLi) system that will improve rover sensing capabilities in a small, lightweight package. The new SQRLi package is developed to survive the hazardous space environment and provide valuable image data during planetary and lunar rover exploration.
In the race toward practical quantum computers and networks, photons — fundamental particles of light — hold intriguing possibilities as fast carriers of information at room temperature. Photons are typically controlled and coaxed into quantum states via waveguides on extended microchips, or through bulky devices built from lenses, mirrors, and beam splitters. The photons become entangled — enabling them to encode and process quantum information in parallel — through complex networks of these optical components. But such systems are notoriously difficult to scale up due to the large numbers and imperfections of parts required to do any meaningful computation or networking.
Ammonia is considered more and more as a promising carbon-free fuel for internal combustion engines to contribute to the decarbonization of several sectors where replacing conventional engines with batteries or fuel cells remains unsuitable. However, ammonia properties can induce some challenges for efficient and stable combustion. This study investigates the use of an active pre-chamber ignition system fueled with hydrogen and compares it to conventional spark ignition, with a focus on lean limit operation and early flame development. Experiments were conducted on a single cylinder optical engine with a compression ratio of 9.5, equipped with a quartz window in the piston for natural flame luminosity imaging using a high-speed camera. The engine was fueled with a mixture of 95% ammonia and 5% hydrogen by volume. Ammonia was injected and mixed with air in the intake port while hydrogen was directly injected into the prechamber. As a function of the intake pressure (1.0, 0.9, 0.8, and
Rousselle, Christine MounaimBrequigny, PierreGelé, RaphaëlMoreau, Bruno
To address the limitations of conventional overspeed detection methods, this study proposes a vehicle overspeed detection approach based on the fusion of millimeter-wave radar (MWR) and vision sensors. The MWR captures target position and velocity data, while the vision sensor acquires vehicle image information. Radar-detected points are mapped onto visual images through coordinate transformation, and the Intersection over Union (IoU) method is employed to associate radar points with vision-detected vehicle bounding boxes. Subsequently, for radar-detected points exceeding the speed threshold, the corresponding vehicle images are identified, enabling real-time overspeed detection and data acquisition. This method not only facilitates prompt identification of speeding behavior but also extracts the associated vehicle images, ensuring both accuracy and informational integrity in overspeed monitoring. Experimental results demonstrate that the proposed method achieves high speed measurement
Li, YuanchenWu, ZhichaoXu, HaiboSong, LiangliangHuang, Hao
Virtual reality (VR), Augmented Reality (AR) and Mixed reality (MR) are advanced engineering techniques that coalesces physical and digital world to showcase better perceiving. There are various complex physics which may not be feasible to visualize using conventional post processing methods. Various industrial experts are already exploring implementation of VR for product development. Traditional computational power is improving day-by-day with new additional features to reduce the discrepancy between test and CFD. There has been an increase in demand to replace actual tests with accurate simulation approaches. Post processing and data analysis are key to understand complex physics and resolving critical failure modes. Analysts spend a considerable amount of time analyzing results and provide directions, design changes and recommendations. There is a scope to utilize advanced features of VR, AR and MR in CFD post process to find out the root cause of any failures occurred with
Savitha, BhuduriSharma, Sachin
Imagine a user opening a technical manual, eager to troubleshoot an issue, only to find a mix of stark black-and-white illustrations alongside a few color images. This inconsistency not only detracts from the user experience but also complicates understanding. For technicians relying on these documents, grayscale graphics hinder quick interpretation of diagrams, extending diagnostics time and impacting overall productivity. Producing high-quality color graphics typically requires significant investment in time and resources, often necessitating a dedicated graphics team. Our innovative pipeline addresses this challenge by automating the colorization and classification of colored graphics. This approach delivers consistent, visually engaging content without the extensive investment in specialized teams, enhancing the visual appeal of materials and streamlining the diagnostic process for technicians. With clearer, more vibrant graphics, technicians can complete tasks more efficiently
Khalid, MaazAkarte, AnuragKale, AniketRajmane, GayatriNalawade, Komal
This paper presents a novel approach to automated robot programming and robot integration in manufacturing domain and minimizing the dependency on manual online/offline programming. Traditional industrial robots programming is typically done by online programing via teach pendants or by offline programming tools. This presents a major challenge as it requires skilled professionals and is a time-consuming process. In today’s competitive market, factories need to harness their full potential through smart and adaptive thinking to keep pace with evolving technology, customer demand, and manufacturing processes. This requires ability to manufacture multiple products on the same production line, minimum time for changeovers and implement robotic automation for efficiency enhancement. But each custom automation piece also demands significant human efforts for development and maintenance. By integrating the Robot Operating System (ROS) with vision-based 3D model generation systems, we address
Hepat, Abhijeet
Measuring the volume of harvested material behind the machine can be beneficial for various agricultural operations, such as baling, dropping, material decomposition, cultivation, and seeding. This paper aims to investigate and determine the volume of material for use in various agricultural operations. This proposed methodology can help to predict the amount of residue available in the field, assess field readiness for the next production cycle, measure residue distribution, determine hay readiness for baling, and evaluate the quantity of hay present in the field, among other applications which would benefit the customer. Efficient post-harvest residue management is essential for sustainable agriculture. This paper presents an Automated Offboard System that leverages Remote Sensing, IoT, Image Processing, and Machine Learning/Deep Learning (ML/DL) to measure the volume of harvested material in real-time. The system integrates onboard cameras and satellite imagery to analyze the field
Singh, Rana ShaktiStallin, Saravanan
The accelerating global shift towards decarbonised energy systems has positioned hydrogen as a highly promising carbon-free fuel. This study comprehensively investigates the macroscopic characteristics and temporal evolution of vortex ring trailing helium jets, serving as a surrogate for hydrogen, injected into a quiescent ambient environment using high-speed Schlieren imaging. This research addresses critical insights into fuel-air mixing dynamics essential for optimising hydrogen direct injection (DI) internal combustion engines. Analysis of helium jet tip’s topology revealed a three-stage evolution from an initial pressure-insensitive phase, dominated by pressure wave structures, to a momentum-driven, vortex-dependent growth stage, then to a fully developed stage. Specifically, the lower-pressure cases showed increased Kelvin-Helmholtz instability and distinct head vortex pinch-off at the final stage. Jet tip velocities transitioned from initial high, rapid pressure wave development
Dong, ShuoShi, HaoZhang, GengxinFeng, YizhuoLu, EnshenWang, XinyanZhao, Hua
Elliptical rotor engines (ERE), also known as X-engines, feature intake and exhaust ports located on the rotating rotor. As the rotor turns, these ports traverse the entire combustion chamber, sequentially completing the scavenging process in three distinct combustion chambers through coordination with the cylinder walls. This intake and exhaust characteristic significantly differs from the characteristic found in traditional Wankel rotor engines. This study established an optical elliptical rotor engine to obtain the in-cylinder flow field by using Particle Image Velocimetry (PIV) and constructed a CFD model based on the experimental results. Then the effects of two different intake runners on the scavenging and combustion process of ERE were investigated. The results indicated that: Due to structural limitations, the prolonged intake port opening duration results in significant gas backflow during the intake process. The curved intake runner exhibits a higher turbulent kinetic energy
Qin, JingWang, YingboPei, YiqiangYao, DasuoDeng, Xiwen
In order to improve engine emission and limit combustion instabilities, in particular for low load and idle conditions, reducing the injected fuel mass shot-to-shot dispersion is mandatory. Unfortunately, the most diffused approach for the hydraulic analysis of low-pressure injectors such as PFIs or SCR dozers is restrained to the mean injected mass measurement in given operating conditions, since the use of conventional injection analyzers is unfeasible. In the present paper, an innovative injection analyzer is used to measure both the injection rate and the injected mass of each single injection event, enabling a proper dispersion investigation of the analysed low pressure injection system. The proposed instrument is an inverse application of the Zeuch’s method, which in this case is applied to a closed volume upstream the injector, with the injector being operated with the prescribed upstream-to-downstream pressure differential. Further, the injector can inject freely against air
Postrioti, LucioMaka, CristianMartino, Manuel
In motorcycle racing and other competitions, there is a technique to intentionally slide the rear wheel to make turns more quickly. While this technique is effective for high-speed riding, it is difficult to execute and carries risks such as falling. Therefore, an anti-sideslip control system that suppresses unintended or excessive sideslip is needed to ensure safe, natural, and smooth turning. In anti-sideslip control, the slip angle is usually used as a control parameter. However, for motorcycles, it is necessary to know the absolute direction of the vehicle's movement. To determine this, GPS or optical sensors are required, but using such sensors for driving is costly and may not provide accurate measurements due to contamination or other environmental factors, making it impractical. Therefore, an anti-sideslip control system was developed by calculating another parameter that indicates the characteristics of the slip angle, without measuring the slip angle itself, thus eliminating
Nakano, KyosukeKawai, KazunoriTakeuchi, Michinori
This study focused on the effects of hydrogen on the flame propagation characteristics and combustion characteristics of a small spark-ignition engine. The combustion flame in the cylinder was observed using a side-valve engine that allowed optical access. The fundamental characteristics of hydrogen combustion were investigated based on combustion images photographed in the cylinder with a high-speed camera and measured cylinder pressure waveforms. Experiments were conducted under various ignition timings and equivalence ratios and comparisons were made with the characteristics of an existing hydrocarbon liquid fuel. The hydrogen flame was successfully photographed, although it has been regarded as being difficult to visualize, thus enabling calculation of the flame propagation speed. As a result, it was found that the flame propagation speed of hydrogen was much faster than that of the existing hydrocarbon fuel. On the other hand, it was difficult to photograph the hydrogen flame
Arai, YutoUeno, TakamoriSuda, RyosukeSato, RyoichiNakao, YoshinoriNinomiya, YoshinariMatsushita, KoichiroKamio, TomohikoIijima, Akira
The present study examines the influence of process parameters on the effect of strength and crystalline properties of AlSi10Mg alloy with laser sintered process. A detailed work was carried out with the effects of varying the laser power, scan speed, and hatch distance on crystalline structure, hardness, and surface roughness. From the analysis, the improved surface quality and mechanical performance were achieved with a scan speed of 1200 mm/s, a laser power of 370 W, and a hatch distance of 0.1 mm. An increase in hardness, improved surface finish, and reduced porosity was observed with decreased hatch distance. However, the balanced results were obtained for scanning speed of 1200 mm/s and laser power of 370 W. The ideal processing conditions decreased the crystalline size, increasing the overall material strength, when crystalline analysis was carried out. The higher scanning speeds supported improved grain refinement and heat diffusion, with the poor hardness value. With the lower
Shailesh Rao, A.
Healthcare data is growing at a faster rate compared to any other industry globally. This data, which plays an instrumental role in patient diagnosis, comes from diverse medical sources, which include magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET), genomics, proteomics, wearable sensor streams and electronic health records (EHRs) that vary in structure. Since the data sets differ from each other and have multiple dimensions, they can be hard to interpret in clinical settings, especially when putting together details from different formats.
A noninvasive imaging system combines two advanced techniques to examine both the structure and chemical composition of skin cancers. This approach could improve how doctors diagnose and classify skin cancer and how they monitor treatment responses.
This document establishes re-certification guidelines applicable to fiber optic fabricator technical training for individuals involved in the manufacturing, installation, support, integration and testing of fiber optic systems. Applicable personnel include: Managers Engineers Technicians Trainers/Instructors Third Party Maintenance Agencies Quality Assurance Production
AS-3 Fiber Optics and Applied Photonics Committee
Items per page:
1 – 50 of 10122