Browse Topic: Optics
The U-Shift IV represents the latest evolution in modular urban mobility solutions, offering significant advancements over its predecessors. This innovative vehicle concept introduces a distinct separation between the drive module, known as the driveboard, and the transport capsules. The driveboard contains all the necessary components for autonomous driving, allowing it to operate independently. This separation not only enables versatile applications - such as easily swapping capsules for passenger or goods transportation - but also significantly improves the utilization of the driveboard. By allowing a single driveboard to be paired with different capsules, operational efficiency is maximized, enabling continuous deployment of driveboards while the individual capsules are in use. The primary focus of U-Shift IV was to obtain a permit for operating at the Federal Garden Show 2023. To achieve this goal, we built the vehicle around the specific requirements for semi-public road
This document applies to safety observers or spotters involved with the use of outdoor laser systems. It may be used in conjunction with AS4970.
The Department of Defense (DoD) is developing technology for satellites to communicate via lasers. Laser communications could transmit data faster and more securely than traditional radio frequency communications. DoD has made progress in developing this technology, but it has also faced delays and other issues-and hasn't fully demonstrated that it works in space. Despite these challenges, DoD plans to continue to develop and launch hundreds of satellites worth billions of dollars that require the use of laser communications.
Aitech introduced its new artificial intelligence (AI)-enabled picosatellite constellation platform, IQSat, at the 40th annual Space Symposium in April. The platform is designed to bring ready to use commercial off the shelf (COTS) embedded computing to data heavy earth imaging and pattern recognition applications enabled by AI and machine learning (ML) processing and algorithms performed onboard a constellation of IQSats. Available as an individual platform or in constellations that could include thousands of picosatellites, IQSat will become available to customers in the fourth quarter of 2025.
In October 2024, Kongsberg NanoAvionics discovered damage to their MP42 satellite, and used the discovery as an opportunity to raise awareness on the need to reduce space debris generated by satellites. Kongsberg NanoAvionics, Vilnius, Lithuania Our MP42 satellite, which launched into low Earth orbit (LEO) two and a half years ago aboard the SpaceX Transporter-4 mission, recently took an unexpected hit from a small piece of space debris or micrometeoroid. The impact created a 6 mm hole, roughly the size of a chickpea, in one of its solar panels. Despite this damage, the satellite continued performing its mission without interruption, and we only discovered the impact thanks to an image taken by its onboard selfie camera in October of 2024. It is challenging to pinpoint exactly when the impact occurred because MP42's last selfie was taken a year and a half ago, in April of 2023.
With 2D cameras and space robotics algorithms, astronautics engineers at Stanford have created a navigation system able to manage multiple satellites using visual data only. They recently tested it in space for the first time. Stanford University, Stanford, CA Someday, instead of large, expensive individual space satellites, teams of smaller satellites - known by scientists as a “swarm” - will work in collaboration, enabling greater accuracy, agility, and autonomy. Among the scientists working to make these teams a reality are researchers at Stanford University's Space Rendezvous Lab, who recently completed the first-ever in-orbit test of a prototype system able to navigate a swarm of satellites using only visual information shared through a wireless network. “It's a milestone paper and the culmination of 11 years of effort by my lab, which was founded with this goal of surpassing the current state of the art and practice in distributed autonomy in space,” said Simone D'Amico
Mechanical light detection and ranging (LiDAR) units utilize spinning lasers to scan surrounding areas to enable limited autonomous driving. The motors within the LiDAR modules create vibration that can propagate through the vehicle frame and become unwanted noise in the cabin of a vehicle. Decoupling the module from the body of the vehicle with highly damped elastomers can reduce the acoustic noise in the cabin and improve the driving experience. Damped elastomers work by absorbing the vibrational energy and dispelling it as low-grade heat. By creating a unique test method to model the behavior of the elastomers, a predictable pattern of the damping ratio yielded insight into the performance of the elastomer throughout the operating temperature range of the LiDAR module. The test method also provides an objective analysis of elastomer durability when exposed to extreme temperatures and loading conditions for extended periods of time. Confidence in elastomer behavior and life span was
This study presents a novel methodology for optimizing the acoustic performance of rotating machinery by combining scattered 3D sound intensity data with numerical simulations. The method is demonstrated on the rear axle of a truck. Using Scan&Paint 3D, sound intensity data is rapidly acquired over a large spatial area with the assistance of a 3D sound intensity probe and infrared stereo camera. The experimental data is then integrated into far-field radiation simulations, enabling detailed analysis of the acoustic behavior and accurate predictions of far-field sound radiation. This hybrid approach offers a significant advantage for assessing complex acoustic sources, allowing for quick and reliable evaluation of noise mitigation solutions.
Design verification and quality control of automotive components require the analysis of the source location of ultra-short sound events, for instance the engaging event of an electromechanical clutch or the clicking noise of the aluminium frame of a passenger car seat under vibration. State-of-the-art acoustic cameras allow for a frame rate of about 100 acoustic images per second. Considering that most of the sound events introduced above can be far less than 10ms, an acoustic image generated at this rate resembles an hard-to-interpret overlay of multiple sources on the structure under test along with reflections from the surrounding test environment. This contribution introduces a novel method for visualizing impulse-like sound emissions from automotive components at 10x the frame rate of traditional acoustic cameras. A time resolution of less than 1ms eventually allows for the true localization of the initial and subsequent sound events as well as a clear separation of direct from
The segment manipulator machine, a large custom-built apparatus, is used for assembling and disassembling heavy tooling, specifically carbon fiber forms. This complex yet slow-moving machine had been in service for nineteen years, with many control components becoming obsolete and difficult to replace. The customer engaged Electroimpact to upgrade the machine using the latest state-of-the-art controls, aiming to extend the system's operational life by at least another two decades. The program from the previous control system could not be reused, necessitating a complete overhaul.
Innovators at NASA Johnson Space Center have developed a handheld digital microscope to fill the critical microscopy needs of human space exploration by providing flight crews in situ hematological diagnostic and tracking ability to assess and monitor crew health in the absence of gravity. Although currently in use aboard the International Space Station (ISS) to work in conjunction with NASA’s handheld slide staining system, the microscope may have numerous applications here on Earth.
Machining metal has its challenges as many shops will attest, but machining glass is another matter – one that Dan Bukaty Jr., President of Precision Glass & Optics (PG&O) is well schooled in. Mr. Bukaty and his 35-person shop manufacture high-end precision glass optics for customers such as IMAX, Intuitive Surgical, Boeing and NASA, to name a few. The products PG&O make can range from the ordinary to the extraterrestrial, such as mirrors that it fabricated for the Hobby–Eberly Telescope to measure dark energy in outer space.
Metabolic imaging is a noninvasive method that enables clinicians and scientists to study living cells using laser light, which can help them assess disease progression and treatment responses. But light scatters when it shines into biological tissue, limiting how deeply it can penetrate and hampering the resolution of captured images.
In February, the Joint Interagency Field Experimentation (JIFX) team at the Naval Postgraduate School (NPS) executed another highly collaborative week of rapid prototyping and defense demonstrations with dozens of emerging technology companies. Conducted alongside NPS’ operationally experienced warfighter-students, the event is a win-win providing insight to accelerate potential dual-use applications.
Artificial intelligence (AI) systems promise transformative advancements, yet their growth has been limited by energy inefficiencies and bottlenecks in data transfer. Researchers at Columbia Engineering have unveiled a groundbreaking solution: a 3D photonic-electronic platform that achieves unprecedented energy efficiency and bandwidth density, paving the way for next-generation AI hardware.
Scientists from Tomsk Polytechnic University and Saratov State University teamed up with colleagues from Taiwan and proposed to make a laser “blade” for a medical scalpel with a specified curved shape using a photonic “hook.” Currently there are laser scalpels only with an axisymmetric focus area, i.e., with a cylindrical blade. According to scientists, changing the shape of the blade will expand the possibilities of using the laser in medicine, while it is about two times thinner than the cylindrical option. The concept and its rationale are published in the Journal of Biophotonics.
Modern communication networks rely on optical signals to transfer vast amounts of data. But just like a weak radio signal, these optical signals need to be amplified to travel long distances without losing information. The most common amplifiers, erbium-doped fiber amplifiers (EDFAs), have served this purpose for decades, enabling longer transmission distances without the need for frequent signal regeneration. However, they operate within a limited spectral bandwidth, restricting the expansion of optical networks.
This standard is applicable to the marking of aerospace vehicle electrical wires and cables using ultraviolet (UV) lasers. This standard specifies the process requirements for the implementation of UV laser marking of aerospace electrical wire and cable and fiber-optic cable to achieve an acceptable quality mark using equipment designed for UV laser marking of identification codes on aerospace wire and cable. Wiring specified as UV laser markable subject to AS4373 and which has been marked in accordance with this standard will conform to the requirements of AS50881.
New technology developed by researchers at the University of Houston could revolutionize medical imaging and lead to faster, more precise and more cost-effective alternatives to traditional diagnostic methods.
Most 3D object detection methods employ LiDAR sensors to create 3D point clouds of their environment. Simply put, LiDAR sensors use laser beams to rapidly scan and measure the distances of objects and surfaces around the source. However, using LiDAR data alone can lead to errors due to the high sensitivity of LiDAR to noise, especially in adverse weather conditions like during rainfall.
Optical sensors serve as the backbone of numerous scientific and technological endeavors, from detecting gravitational waves to imaging biological tissues for medical diagnostics. These sensors use light to detect changes in properties of the environment they’re monitoring, including chemical biomarkers and physical properties like temperature. A persistent challenge in optical sensing has been enhancing sensitivity to detect faint signals amid noise.
Companies have invested heavily to improve color in digital imaging, but wavelength is just one property of light. Polarization — how the electric field oscillates as light propagates — is also rich with information, but polarization imaging remains mostly confined to table-top laboratory settings, relying on traditional optics such as waveplates and polarizers on bulky rotational mounts.
Items per page:
50
1 – 50 of 10016