Browse Topic: Electromagnetic compatibility
As an important bridge connecting cities and rural areas, highway transportation has an irreplaceable role in regional economic development [1]. Accompanied by the booming development of long-distance transportation industry, strengthening highway transportation is of great significance to improve people's living standards [2], but because of the special characteristics of truck transportation, fuel theft is frequent, seriously endangering the driver's life and the safety of goods transportation, although the police in the severe crackdown, but fuel theft seems to be in addition to inexhaustible, truck drivers lose oil incidents still occur from time to time, due to the increasingly serious energy problems, the world's countries have Due to the increasingly serious energy problems, countries around the world have formulated strict automotive fuel consumption rate (hereinafter referred to as fuel consumption) regulations [3], in the transportation process to prevent fuel theft is of
The interaction of electric, electronic (E/E) and mechanical components defines the quality of a BEV’s powertrain. Component selection, their integration and calibration aim at meeting legal requirements for EMC and safety as well as competitive targets for efficiency, NVH and driving comfort. These tasks in particular need attention on electromagnetic events on the DC bus, the high-power electronics of inverters, the e-motors, and the drive shaft. Each component within this environment is defined by its electromechanical features with variabilities selected from a large set of operating parameters. Consequently, a complete powertrain and its controllers give rise to endless combinations for powertrain operation. How to understand and avoid risk laden and ineffective parameter options, how to find powertrain control parameters for safe, efficient and comfortable operation? And how to find solutions within competitive development timeframes? Particular issues include high voltage risks
Modern military aircraft represent some of the most complex electronic environments ever engineered. These platforms integrate advanced avionics, radar systems, data links, and communication networks that must function seamlessly in hostile, high-frequency environments. In these mission-critical contexts, electromagnetic interference (EMI) poses a silent but serious threat that can degrade signal integrity, cause crosstalk between systems, or even lead to mission failure. The combination of increasing data rates, higher frequencies, and more complex electromagnetic environments demands shielding solutions that can deliver superior performance while contributing to overall system weight reduction. This challenge has driven innovation toward advanced materials that maintain electrical effectiveness while dramatically reducing mass.
This SAE Aerospace Standard (AS) contains requirements for a digital time division command/response multiplex data bus, for use in systems integration that is functionally similar to MIL-STD-1553B with Notice 2 but with a star topology and some deleted functionality. Even with the use of this document, differences may exist between multiplex data buses in different system applications due to particular application requirements and the options allowed in this document. The system designer must recognize this fact and design the multiplex bus controller (BC) hardware and software to accommodate such differences. These designer selected options must exist to allow the necessary flexibility in the design of specific multiplex systems in order to provide for the control mechanism, architectural redundancy, degradation concept, and traffic patterns peculiar to the specific application requirements.
Defense Advanced Projects Research Agency (DARPA) Arlington, VA outreach@darpa.mil
This document presents minimum criteria for the design and installation of LED assemblies in aircraft. The use of "shall" in this specification expresses provisions that are binding. Nonmandatory provisions use the term "should."
In the early 2010s, LightSquared, a multibillion-dollar startup promising to revolutionize cellular communications, declared bankruptcy. The company couldn't figure out how to prevent its signals from interfering with those of GPS systems. Now, Penn Engineers have developed a new tool that could prevent such problems from ever happening again: an adjustable filter that can successfully prevent interference, even in higher-frequency bands of the electromagnetic spectrum.
This AIR was prepared to inform the aerospace industry about the electromagnetic interference measurement capability of spectrum analyzers. The spectrum analyzers considered are of the wide dispersion type which are electronically tuned over an octave or wider frequency range. The reason for limiting the AIR to this type of spectrum analyzer is that several manufacturers produce them as general-purpose instruments, and their use for EMI measurement will give significant time and cost savings. The objective of the AIR is to give a description of the spectrum analyzers, consider the analyzer parameters, and describe how the analyzers are usable for collection of EMI data. The operator of a spectrum analyzer should be thoroughly familiar with the analyzer and the technical concepts reviewed in this AIR before performing EMI measurements.
Corrosion control is always of concern to the designer of electronic enclosures. The use of EMI gaskets to provide shielding often creates requirements that are in conflict with ideal corrosion control. This SAE Aerospace Recommended Practice (ARP) presents a compatibility table (see Figure 1) which has as its objective a listing of metallic couples that are compatible from a corrosion aspect and which still maintain a low contact impedance.
Rydberg Technologies, an Ann Arbor, Michigan-based quantum technology startup, demonstrated the use of an atomic receiver for long-range RF applications during the NetModX23 event hosted by the U.S. Army Combat Capabilities Development Command (DEVCOM) C5ISR Center in December. The 2023 edition of NetModX featured 10 weeks of experimentation spanning 62 different technologies across 17 focus areas and five modernization priorities including “Future Vertical Lift, Long-Range Precision Fires, Network, Next Generation Combat Vehicle and Soldier Lethality,” according to the Army. A major goal sought by the C5ISR Center with NetModX is to take technologies that are nearing maturity from research labs directly into operational environments for assessments by active warfighters.
In the realm of medical technology, the quest for reliability and safety is unending. As medical devices become increasingly sophisticated, so too does the challenge of protecting these devices from electromagnetic interference (EMI). The concept of electromagnetic compatibility (EMC) has thus become a pivotal consideration for medical device manufacturers. At the heart of this concern lies high-attenuation shielding, a critical component in safeguarding sensitive medical equipment against the disruptive forces of EMI.
This Aerospace Recommended Practice (ARP) describes a standard method and means for measuring or calibrating the "Spectrum Amplitude" output of an impulse generator.
This specification covers the general requirements for conventional AC and/or DC current carrying filter networks for the reduction of electromagnetic interference. A conventional filter is defined herein as a component containing definitive, lumped, R-L-C components and not employing distributed parameters as a required characteristic.
This SAE Recommended Practice will define the Physical Layer and portions of the Data Link Layer of the Open Systems Interconnection model (ISO 7498) for a 125 kbps High Speed CAN (HSC) protocol implementation. Both ECU and media design requirements for networks will be specified. Requirements will primarily address the CAN physical layer implementation. Requirements will focus on a minimum standard level of performance from the High Speed CAN (HSC) implementation. All ECUs and media shall be designed to meet certain component level requirements in order to ensure the HSC implementation system level performance at 125 kbps. The minimum performance level shall be specified by system level performance requirements or characteristics described in detail in Section 5 of this document. This document is designed such that if the Electronic Control Unit requirements defined in Section 6 are met, then the system level attributes should be obtainable. This document will address only
This SAE Recommended Practice will define the Physical Layer and portions of the Data Link Layer of the Open Systems Interconnection model (ISO 7498) for a 250 kbps High Speed CAN (HSC) protocol implementation. Both ECU and media design requirements for networks will be specified. Requirements will primarily address the CAN physical layer implementation. Requirements will focus on a minimum standard level of performance from the High Speed CAN (HSC) implementation. All ECUs and media shall be designed to meet certain component level requirements in order to ensure the HSC implementation system level performance at 250 kbps. The minimum performance level shall be specified by system level performance requirements or characteristics described in detail in Section 5 of this document. This document is designed such that if the Electronic Control Unit (ECU) requirements defined in Section 6 are met, then the system level attributes should be obtainable. This document will address only
This document covers the general physical, electrical, functional, testing, and performance requirements for conductive power transfer, primarily for vehicles using a conductive ACD connection capable of transferring DC power. It defines conductive power transfer methods, including the infrastructure electrical contact interface, the vehicle connection interface, the electrical characteristics of the DC supply, and the communication system. It also covers the functional and dimensional requirements for the vehicle connection interface and supply equipment interface. New editions of the documents shall be backwards compatible with the older editions. There are also sub-documents which are identified by a SAE J3105/1, SAE J3105/2, and SAE J3105/3. These will be specific requirements for a specific interface defined in the sub-document. SAE J3105: Main document, including most requirements. ○ SAE J3105/1: Infrastructure-Mounted Cross Rail Connection ○ SAE J3105/2: Vehicle-Mounted
Items per page:
50
1 – 50 of 753