Browse Topic: Battery thermal management

Items (240)
In the era of Software Defined Vehicles, the complexity and requirements of automotive systems have increased knowingly. EV Thermal management systems have become more complicated while having multiple functions and control strategies within software frameworks. This shift creates new challenges like increased development efforts and long lead time in creating an efficient thermal management system for Electric Vehicles (EV’s) due to battery charging and discharging cycles. For solving these challenges in the early stages of development makes it even more challenging due to the unavailability of key components such as fully developed ECU hardware, High voltage battery pack and the motor. To address this, a novel framework has been designed that combines virtual simulation with physical emulation at the same time, enabling the testing and validation of thermal control strategies without fully matured system and the ECU hardware. The framework uses the Speedgoat QNX machine as the
Chothave, AbhijeetS, BharathanS, AnanthGangwar, AdarshKhan, ParvejGummadi, GopakishoreKumar, Dipesh
Thermal comfort is increasingly recognized as a vital component of the in-vehicle user experience, influencing both occupant satisfaction and perceived vehicle quality. At the core of this functionality is the Climate Control Module (CCM), a dedicated embedded Electronic Control Unit (ECU) within automotive HVAC system [6]. The CCM orchestrates temperature regulation, airflow distribution, and dynamic environmental adaptation based on sensor inputs and user preferences. This paper introduces a comprehensive Hardware-in-the-Loop (HIL) [3] testing framework to validate CCM performance under realistic and repeatable conditions. The framework eliminates the dependencies on physical input devices—such as the Climate Control Head (CCH) and Infotainment Head Unit (HU)—by implementing virtual interfaces using real-time controller, and Dynamic System modelling framework for plant models. These virtual components replicate the behaviour of physical systems, enabling closed loop testing with high
More, ShwetaShinde, VivekTurankar, DarshanaPatel, DafiyaGosavi, SantoshGhanwat, Hemant
In current scenario, demand for alternate energy is increasing due to depletion of fossil fuels and countries working to achieve carbon neutrality by 2050. Hydrogen being a cleaner fuel, many OEMs across the world started to work on various strategies like hydrogen combustion engine and fuel cell. Passenger vehicles like buses are at the lookout for fuel cell technology at faster rate than other commercial vehicles. In fuel cell vehicles, cooling system design is critical & complex since it includes fuel cell cooling, Power electronics cooling & battery cooling. In this paper, cooling system design of a Fuel cell electric bus for inter-city application is demonstrated. Radiators and Fans are designed considering overall heat rejection and Coolant inlet temperature requirements of components. Cooling system circuit and pump is decided to meet the coolant flow rate targets. Flow simulation and thermal simulation done with the help of simulation models built using software KULI to predict
M S, VigneshKiran, Nalavadath
Battery Thermal Management Systems (BTMS) play a critical role in ensuring the longevity, safety, and efficient operation of lithium-ion battery packs. These systems are designed to better dissipate the heat generated by the cells during vehicle operation, thereby maintaining a uniform temperature distribution across the battery modules, preventing overheating and mitigating the chances of thermal runaway. However, one of the primary challenges in BTMS design lies in achieving effective thermal contact between the battery cells and the cooling plate. Non-uniform or excessive application of Thermal Interface Materials (TIMs) without ensuring robustness and uniformity can increase interfacial thermal resistance, leading to significant temperature variations across the battery modules, which may trigger power limitations via the Battery Management System (BMS) and these thermal changes can cause inefficient cooling, ultimately affecting battery performance and lifespan. In this paper, a
K, MathankumarJahagirdar, ManasiKumbhar, Makarand Shivaji
Ensuring the safety and functionality of sophisticated vehicle technologies has grown more difficult as the automotive industry quickly shifts to intelligent, electric, and connected mobility. Software-defined architectures, electric powertrains, and advanced driver assistance systems (ADAS) all require strong quality assurance (QA) frameworks that can handle the multi domain nature of contemporary vehicle platforms. In order to thoroughly assess the functionality and dependability of next generation automotive systems, this paper proposes an integrated QA methodology that blends conventional testing procedures with model-based validation, digital twin environments, and real-time system monitoring. The suggested framework, which includes hardware-in-the-loop (HIL), software-in-the-loop (SIL), and over-the-air (OTA) testing techniques, concentrates on end-to-end traceability from specifications to validation. Simulating intricate situations for ADAS, electric vehicle battery temperature
Komanduri, Arun SrinivasSrivastava, Anuj
India's electric 2-wheeler (E2W) market has witnessed fast growth, driven by lucrative government policies. The two-wheeler segment dominates the Indian automotive market, accounting for the largest share of total sales. Consequently, the manufacturers of 2-wheelers are developing new electric vehicles (EV) tailored for the Indian market. However, the Indian EV market has witnessed multiple fire accidents in recent years, raising safety concerns among consumers and industry stakeholders. These incidents highlight key weakness in battery thermal management systems (BTMS), particularly during charging. Most existing E2W BTMS relies on passive (natural) air cooling, which has been associated with fire incidents due to its inefficiency in heat dissipation, particularly during charging in India's high-temperature environment. Therefore, it is imperative to build thermally viable and economical BTMS for the growing E2W vehicles with fast charging capability. FEV is actively developing the
Raut PhD, AnkitHiremath, Vinodkumar SEmran, AshrafGarg, ShivamBerry, Sushil
With the rising adoption of electric vehicles, the need for robust and efficient power distribution systems has become increasingly important. As the battery pack is the primary energy source for an electric vehicle (EV), the strategy of selection of switchgears and busbars is paramount. Currently, the design and selection of battery protection and conducting components, such as switchgears and busbars are carried out primarily focusing on the continuous current and the peak current capabilities of the battery pack. Despite this approach ensuring that the components can withstand extreme conditions, it often results in over-engineering. The sizing should be such that it does not overdesign, which would result in unnecessary cost and material weight addition to the pack, ultimately leading to performance deterioration. As the current discharge from a battery pack is dynamic in nature and fluctuates based on driving conditions and usage a real-time heat generation studies have to be
Soman, Anusatheesh, GouthamK, Mathankumar
The performance, lifespan, safety, and overall cost of high-voltage batteries—central elements in electric vehicles (EVs)—are fundamental to the success of the entire EV industry. These batteries, primarily used as energy storage systems, are especially critical in small commercial vehicles (SCVs), where efficient thermal management directly impacts reliability and durability. This paper presents innovative methods to improve energy efficiency, driving range, charging speed, and cost-effectiveness by combining advanced insulation techniques with thermoelectric cooling systems (TECs). The automotive industry is growing in EV domain and mostly in commercial vehicle application. The major challenge in EV’s is maintaining battery temperature to get optimal performance and best battery warranty. The key strategy of this research is providing insulating materials to stabilize battery temperatures. The thermal insulation minimizes thermal losses and buffers against external environmental
Chormule, Suhas RangraoWarule, PrasadNagpure, RahulJadhav, Vaibhav
This comprehensive research presents an in-depth analysis of communication protocols essential for implementing fast charging systems in India's rapidly expanding electric two-wheeler and three-wheeler market. As India witnesses unprecedented growth in electric mobility, with two-wheelers representing over 95% of current EV sales, the establishment of standardized, secure, and efficient charging protocols becomes paramount for widespread adoption. This study examines the current landscape of AC charging methodologies, evaluates the technical and economic feasibility of DC fast charging implementation, and provides detailed comparative analysis of existing international standards including IS 17017-25, IS 17017-31, ChaoJi, and CCS 2.0. The research concludes with strategic recommendations for developing cyber-secure, cost-effective charging infrastructure specifically tailored to meet India's unique market requirements and operational constraints.
Uthaman, SreekumarMulay, Abhijit B
Electric vehicles (EVs) are coming into usage quickly because of the environmental advantages and technological innovations. But among the most important issues in EV operation is effectively handling thermal loads, especially in the mobile air-conditioning (MAC) system. As opposed to internal combustion engine (ICE) vehicles, which have access to engine waste heat to use for climate control, EVs depend solely on the battery for propulsion and auxiliary systems. This renders the MAC system one of the primary energy consumers and directly influences vehicle range and overall efficiency. While MAC systems are inherently designed for energy efficiency, this study focuses on an addition to the controller-level optimization, providing an additional pathway to improve thermal management performance in existing EV architectures. The work uniquely implements and compares five rule-based supervisory controllers (RBCs) on an open-source Simulink-based electric vehicle thermal management (EVTM
Akkalkot, Yash SatishVidyasagar, ShekharRaju, Tarun L.Vaasuki, G.Kiran, M.
In the recent years, the use of conventional passenger vehicles has been increasingly discouraged, from European-level policies to local municipal regulations, due to the urgent need to reduce greenhouse gas emissions and urban pollution. In response to these challenges, the PRIN2020 project HySUM (Hybrid SUstainable Mobility platform) explores innovative hybrid powertrain solutions for light and heavy quadricycles to achieve near-zero pollutant emissions, focusing on internal combustion engine hybrid electric vehicles and fuel cell hybrid electric vehicles. Taking all these aspects into consideration, this article proposes an integrated solution for cooling/HVAC circuits, to improve energy efficiency and occupants’ comfort, while focusing on proper battery operation, with a recuperator heat exchanger used to recover the available heat at the powertrain output, in order to reduce the HVAC heater energy consumption. The complexity of the circuit requires a specific control logic to be
Lombardi, SimonePutano Bisti, ChiaraFederici, LeonardoPistritto, AntoninoChiappini, DanieleTribioli, Laura
The growth of the electric vehicle market has driven the advancement of technologies related to energy storage and lithium-ion cells, which stand out for their fast charge and discharge capabilities, high energy density, and long service life. This paper proposes a thermal control strategy for lithium-ion battery packs using the Active Disturbance Rejection Control (ADRC) method. The model is developed in Simcenter Amesim software, using cylindrical 21700 cells in a pack equipped with a water-cooling system, and was adapted for export in FMU format and integrated into MATLAB/Simulink, where the control algorithms were designed and simulated. From step input tests, a first-order transfer function was identified with a fitting of 97.67%, supporting the adoption of a first-order ADRC. The tests involved scenarios with changes in temperature reference and current disturbances typical of vehicle operation. Results indicate that ADRC performs satisfactorily in temperature tracking, even
Leal, Gustavo NobreFernandes, Lucas PasqualEbner, Eric RossiniNeto, Cyro AlbuquerqueLeonardi, Fabrizio
The increasing importance of electric vehicles requires addressing challenges related to fast charging, safety, and battery range. Thermal management ensures safety, prolongs battery life, and enables extremely fast charging. In this regard, this article proposes a novel battery thermal management system (BTMS) optimization approach based on a model-free deep reinforcement learning (RL) for a battery pack of an electric vehicle under extreme fast-charging conditions considering the detailed dynamics of vehicle-level BTMS. The objective of the proposed approach seeks to minimize the battery degradation and power consumption of the underlying BTMS. In this respect, the dynamic equations of the thermal system model are constructed considering the air-conditioning refrigerant loop and indirect battery liquid cooling loop. Further, the proposed methodology is implemented on a battery pack, and the results are compared with those of model predictive control (MPC) and proportion–integral
Arjmandzadeh, ZibaHossein Abbasi, MohammadWang, HanchenZhang, JiangfengXu, Bin
Vibration testing is an essential component of automotive product development, ensuring that components such as engines, transmissions, and electronic systems perform reliably under various operating conditions. The adoption of electronics in the automotive industry, particularly during the 1950s and 1960s, marked a shift in vibration testing approaches, moving from primarily low-frequency tests to methods that could address high-frequency vibrations as well. This evolution highlights the need for effective vibration fixture designs that can simulate real-world conditions, enabling manufacturers to detect potential weaknesses before products are integrated into vehicles. A key aspect of vibration testing is the identification of resonant frequencies within components. The coupled mass-spring-damper system, for example, can exhibit multiple resonances characterized by a Bode Diagram, where the Q factor technique is utilized to assess damping levels. Accurate vibration analysis can be
Shinde, PramodkumarShah, Viren
Thermal Management System (TMS) for Battery Electric Vehicles (BEV) incorporates maintaining optimum temperature for cabin, battery and e-powertrain subsystems under different charging and discharging conditions at various ambient temperatures. Current methods of thermal management are inefficient, complex and lead to wastage of energy and battery capacity loss due to inability of energy transfer between subsystems. In this paper, the energy consumption of an electric vehicle's thermal management system is reduced by a novel approach for integration of various subsystems. Integrated Thermal Management System (ITMS) integrates air conditioning system, battery thermal management and e-powertrain system. Characteristics of existing integration strategies are studied, compared, and classified based on their energy efficiency for different operating conditions. A new integrated system is proposed with a heat pump system for cabin and waste heat recovery from e-powertrain. Various cooling
K, MuthukrishnanS, SaikrishnaMahobia, TanmayVijayaraj, Jayanth Murali
The transition towards sustainable transportation necessitates the development of advanced thermal management systems (TMS) for electric vehicles (EVs), hybrid electric vehicles (HEVs), hydrogen fuel cell vehicles (FCVs), and hydrogen internal combustion engine vehicles (HICEVs). Effective thermal control is crucial for passenger comfort and the performance, longevity, and safety of critical vehicle components. This paper presents a rigorous and comparative analysis of TMS strategies across these diverse powertrain technologies. It systematically examines the unique thermal challenges associated with each subsystem, including cabin HVAC, battery packs, fuel cell stacks, traction motors, and power electronics. For cabin HVAC, the paper explores methods for minimizing energy consumption while maintaining thermal comfort, considering factors such as ambient temperature, humidity, and occupant load. The critical importance of battery thermal management is emphasized, with a focus on
K, NeelimaK, AnishaCh, KavyaC, SomasundarSatyam, SatyamP, Geetha
Modern battery management systems, as part of Battery Digital Twin, include cloud-based predictive analytics algorithms. These algorithms predicts critical parameters like Thermal runaway events, state of health (SOH), state of charge (SOC), remaining useful life (RUL), etc. However, relying only on cloud-based computations adds significant latency to time-sensitive procedures such as thermal runaway monitoring. This is a very critical and safety function and delay is not acceptable, but automobiles operate in various areas throughout the intended path of travel, internet connectivity varies, resulting in a delay in data delivery to the cloud and similarly delay in return of the detected warning to the driver back in the vehicle. As a result, the inherent lag in data transfer between the cloud and vehicles challenges the present deployment of cloud-based real-time monitoring solutions. This study proposes application of Federated Learning and applying to a thermal runaway model in low
Sarkar, Prasanta
To address the thermal management challenges in lithium-ion batteries-which are associated with safety, real-world driving, and operating cycles, particularly at high discharge rates and in extreme ambient conditions-it is essential to maintain the battery temperature within its optimal range. This work introduces a novel hybrid Battery Thermal Management System (BTMS) that integrating a Phase Change Material (PCM) and air cooling with fins attached to air-channel in PCM side. Unlike conventional approaches that use standard rectangular fins, this study employs angular fins with varying dimensions to enhance heat dissipation. The hybrid system is designed to leverage the high latent heat storage capability of the PCM while ensuring efficient convective heat removal through air cooling. The airflow through the cooling channel accelerates heat dissipation from the PCM, thereby increasing its effectiveness. The angular fins are strategically positioned within the PCM section to enhance
Kalvankar, TejasLam, Prasanth Anand KumarAruri, Pranushaa
The whole electric vehicle world is directly & indirectly dependent on performance, life, safety & cost of high voltage battery which is used in vehicle primarily as energy storage system. The efficient thermal management of batteries is crucial for the performance and longevity of small commercial vehicles (SCVs). This paper explores innovative strategies aimed at enhancing energy optimization, range improvement, charging time optimization & cost reduction through the integration of insulation and thermoelectric cooling systems. As the demand for electric vehicles (EVs) continues to rise, particularly in commercial applications, effective battery thermal management systems (BTMS) have become increasingly important. Maintaining optimal operating temperatures is essential to ensure battery performance, safety, and lifespan. The use of advanced insulating materials is a foundational element in maintaining stable battery temperatures. By minimizing heat loss and protecting against
Nagpure, RahulChormule, Suhas RangraoJadhav, VaibhavWarule, Prasad
Electric vehicles frequently employ lithium-based batteries owing to their elevated energy density, long lifespan, and flexible design. Currently, research is concentrated on thermal safety, particularly in high power and dense packing applications. In addition to being vital for data management, equalization, temperature control, voltage and current estimation, and battery safety, performance, and durability, for equalization a battery thermal management system is also necessary. To obtain a balanced and effective thermal management solution, passive and active thermal management techniques address thermal challenges in various applications. This paper provides a review on temperature effect on battery performance and comprehensive comparison between passive and active thermal management techniques, with a specific focus on temperature equalization and state of charge equalization in battery systems. A passive approach is analysed using natural cooling methods to equalise temperatures
Shaik, AmjadTalluri, Srinivasa RaoPrasad, GvlBoora, Meghana
Lithium-ion batteries are the most preferable power source for electric vehicles due to their high energy density compared to other battery types. However, the life cycle, battery capacity, and safe operation are significantly influenced by the operating temperatures of the batteries. In general, most of the battery thermal management systems employ battery cooling plates to maintain the required battery temperature. However, there are significant problems in battery cooling such as coolant temperature difference, non-uniform velocity distribution, coolant pressure drop and power consumption, which are influenced by cooling plate channel geometric parameters. In this study, different combinations of critical parameters such as channel width, channel height and dimple diameter of battery cooling plates are modelled. Simulations are made using Computational Fluid Dynamics (CFD). From the results, pressure drop, temperature rise and power consumption are analyzed to identify the dominant
K, MuthukrishnanK, KeshavbalajeGutte, AshishN, Aswin
For electric vehicles (EVs), the automotive air-conditioning system is the most energy-consuming auxiliary system and the key to the thermal comfort of the passenger compartment. How to reduce the energy consumption of EVs’ air-conditioning system and improve passenger comfort is one of the focuses of EVs’ air-conditioning system research. This article proposes a method to integrate the passenger cabin thermal comfort into the control of electric vehicle air-conditioning system. A coupled thermal model of the passenger compartment, air-conditioning system and battery thermal management system of EVs is established for the control of the air-conditioning system, and the effects of the air supply parameters of the air-conditioning system and the zonal air supply control strategy of the air-conditioning system on the thermal comfort of the passenger compartment are analyzed. Based on this coupled thermal model, an air-conditioning control strategy is established with the thermal comfort
Xu, XiangYan, FuWuWang, WeiLiu, ShuqiWang, Yuan
Nowadays, a push towards decarbonisation to reduce the problem of the environmental pollution is increasingly pressing. In the current automotive context, a tendency among the cars manufacturer to consider the development of hybrid vehicles is growing. Indeed, thanks to the battery downsizing due to the addition of the range extender (REx), a hybrid electric vehicle (HEV) allows to overcome the limitations of pure electric vehicles (EV) such as the infrastructure which is linked to the battery charging process. Moreover, the performance of battery in terms of efficiency and operating limits are strictly related with the temperature of the battery pack and with the energy management strategy (EMS). The proposed work aims to analyse the performance of a Plug-In series hybrid vehicle (Plug-In HEV) depending on the temperature of battery pack and the EMS. The considered Plug-In HEV is equipped with a hydrogen-fuelled internal combustion engine that is used as REx. First, a lumped dynamic
Cervone, DavideSicilia, MassimoPolverino, PierpaoloPianese, Cesare
Nowadays, electric vehicles (EVs) are considered one of the most promising solutions for reducing pollutant emissions related to the road transportation sector. Although these vehicles have achieved a high level of reliability, various challenges about Li-ion storage systems and their thermal management systems remain unresolved. This work proposes a numerical and experimental study of a lithium-ion storage cell with a scaled battery thermal management system (BTMS). In particular, a channel plate for liquid cooling is specifically designed and manufactured for the cell under test. The BTMS is based on the development of an indirect liquid cooling system with optimal control of the coolant flow rate to fulfill the thermal requirements of the system. A lumped parameters approach is used to simulate the electro-thermal behavior of the system and to analyze the effects of real-time control strategies on the temperature of the cell under test. An ad-hoc experimental test rig is set up for
Capasso, ClementeCastiglione, TeresaPerrone, DiegoSequino, Luigi
Battery management systems are among the key components in electric vehicles (EVs), which are increasingly replacing internal combustion engine (ICE) vehicles in the automotive industry. Battery management systems mainly focus on battery thermal management, efficiency, battery life and the safety conditions. Generally, lithium-ion batteries have been chosen in EV cars. Therefore, the internal resistance of Li-ion batteries plays a crucial role in the thermal behavior of the energy storage system. Most of the published studies rely on 0D-1D models to analyses single cell thermal behavior depending on the internal resistance at different ambient temperatures and charging/ discharging rates, and on the cooling system. However, these models, though fast, cannot provide detailed information about the temperature distribution within a cell or a module. Full 3D Computational Fluid Dynamics (CFD)- Conjugate Heat Transfer (CHT) simulations on the other hand, are very time consuming and require
Karaca, CemOlmeda, PabloMargot, XandraPostrioti, LucioBaldinelli, Giorgio
The temperature evolution of lithium-ion cells under operation has a significant impact on their performance, efficiency, and aging. Modeling the thermal status of lithium-ion cells is crucial to predict and prevent undesired working conditions or even failures. In this context, this paper presents a mathematical model to predict the transient temperature distributions of a lithium-ion polymer battery (LiPo) cooled by forced convection via a specially designed channel plate for liquid cooling. For the battery modeling, Newman’s pseudo-2D approach was used to perform a computational fluid dynamics (CFD) analysis. It assumes that the porous electrode is made of equally sized, isotropic, homogeneous spherical particles, which results in smooth, uniform intercalation/de-intercalation of lithium inside the electrode. Also, the channel plate geometry and the cooling liquid fluid-dynamic behavior were simulated with a commercial code based on the finite volume method. The model has been set
Ferrari, CristianMagri, LucaSequino, Luigi
Effective thermal management is essential for optimizing the performance and longevity of lithium-ion battery packs, particularly in electric vehicles facing extreme temperature conditions. This study investigates the performance of an indirect liquid cooling system used for pre-cooling stationary electric vehicle battery packs, focusing on scenarios such as vehicle sleep mode in high-temperature conditions. The cooling system, which utilizes a water-glycol mixture flowing at 1.2 L/min, was tested on a battery pack consisting of 36 prismatic battery cells in a thermally isolated chamber, subjected to initial temperatures of 50.0°C, 60.0°C, and 69.5°C. To assess the thermal behavior, 25 thermocouples were strategically positioned on the battery surface, and inlet coolant temperature was monitored via an additional thermocouple. An exponential cooling response was observed across all temperature cases, with maximum temperature difference between the hottest and coldest cells reaching 7.6
Darvish, HosseinCarlucci, Antonio PaoloFicarella, AntonioLaforgia, Domenico
Medium- and heavy-duty fuel cell electric vehicles (FCEV) have gained attention over the battery electric vehicles, offering long vehicle range, fast refueling times, and high payload capacity. However, FCEVs face challenges of high upfront system cost and fuel cell system durability. To address the cost sensitivity of the fuel cell powertrain, it is imperative to maximize the operating efficiency of the energy and thermal management system while meeting the fuel cell durability requirements. This article presents an advanced adaptive control strategy for each of the energy and thermal management systems of a FCEV to maximize operating efficiency as well as vehicle performance. The proposed adaptive energy management strategy builds upon a real-time equivalent consumption minimization strategy (ECMS), which is updated based on a horizon prediction algorithm using GPS and navigation data of the route. The algorithm predicts the battery state of charge (SOC) for a defined horizon, which
Batool, SadafBaburaj, AdithyaSadekar, GauravJoshi, SatyumFranke, Michael
Fast charging of lithium-ion batteries presents significant thermal management challenges, due to the high demanding conditions of high C-rates, particularly at extreme ambient temperatures. This study explores the thermal behavior of a cylindrical lithium-ion cell during fast-charging scenarios designed to achieve a full charge in 15 minutes or less (SOC: 0%–100%), across a wide range of ambient temperatures. The analysis covers a broad spectrum of ambient temperatures, from 303 K to 333 K, addressing real-world operational challenges faced by electric vehicles and energy storage systems. A validated thermal model, calibrated with experimental data on the open circuit voltage (OCV) and internal resistance of the cell across varying conditions, is employed to accurately predict the temperature distribution of the cell at different states of charge (SOC). The model also includes scenarios involving high initial cell temperatures to assess their effect on thermal performance during fast
Jahanpanah, JalalMahmoudzadeh Andwari, AminBabaie, MeisamKonno, JuhoAkbarzadeh, Mohsen
Electrification of city busses is an important factor for decarbonisation of the public transport sector. Due to its strictly scheduled routes and regular idle times, the public transport sector is an ideal use case for battery electric vehicles (BEV). In this context, the thermal management has a high potential to decrease the energy demand or to increase the vehicles range. The thermal management of an electric city bus controls the thermal behaviour of the components of the powertrain, such as motor and inverters, as well as the conditioning of the battery system and the heating, ventilation, and air conditioning (HVAC) of the drivers’ front box and the passenger room. The focus of the research is the modelling of the thermal behaviour of the important components of an electric city bus in MATLAB/Simscape including real-world driving cycles and the thermal management. The heating of the components, geometry and behaviour of the cooling circuits as well as the different mechanisms of
Schäfer, HenrikMeywerk, MartinHellberg, Tobias
The high-performance electric sports cars market is expected to register rapid development in the next years, driven by a different attitude of racing enthusiasts toward electric vehicles. The improvements in battery technology are reinforcing consumer confidence and interest in electric sports vehicles, making them more attractive to enthusiasts and accelerating their adoption. Batteries have been used in high heat generation conditions more often with fast charging and discharging. Therefore, the need for more advanced battery thermal management systems (BTMS) has been increasing in recent years. Vegetable oil, owing to its unique availability and biodegradability, is considered as a viable alternative to fossil fuel-based cooling fluids in immersion cooling systems. In the present work, the feasibility of using vegetable oil in immersion cooling under high discharge conditions is studied by comparing it with four types of fossil fuel-based cooling fluids. Immersion cooling was
Hong, HanchiSong, XiangShi, Xud’Apolito, LuigiXin, Qianfan
Improving electric vehicles’ overall thermal management strategy can directly or indirectly improve battery efficiency and vehicle range [1]. In this study, the effect of the coolant type used in BTMS (battery thermal management system) units used for heating batteries in cold weather conditions was investigated in electric buses. In this investigation, tests were performed with two types of antifreeze, which have different characteristics. The study evaluated the impact of coolant flow, BTMS circulation pump performance, and battery heating using these two types of antifreeze in the BTMS coolant line. In addition to carrying out tests, 1D computational fluid dynamics models’ simulations were carried out for both types of antifreeze, and the results were validated with experimental findings. In this study, a 12-m EV Citivolt vehicle of Anadolu Isuzu was used for tests. As a result, it was observed that differences in the properties of the antifreeze that is used in BTMS coolant line
Çetir, ÖzgürBirgül, Çağrı Emre
TOC
Tobolski, Sue
With the global issue of fossil fuel scarcity and the greenhouse effect, interest in electric vehicles (EVs) has surged recently. At that stage, because of the constraints of the energy density and battery performance degradation in low-temperature conditions, the mileage of EVs has been criticized. To guarantee battery performance, a battery thermal management system (BTMS) is applied to ensure battery operates in a suitable temperature range. Currently, in the industry, a settled temperature interval is set as criteria of positive thermal management activation, which is robust but leads to energy waste. BTMS has a kilowatt-level power usage under high- and low-temperature environments. Optimizing the BTMS control strategy becomes a potential solution to reduce energy consumption and overcome mileage issues. An appropriate system simulation model provides an effective tool to evaluate different BTMS control strategies. In this study, a predictive BTMS control strategy, which adjusts
Huang, ZhipeiChen, JiangboTang, Hai
The shift towards hybrid and electric powertrains in off-road vehicles aims to enhance mobility, extend range, and improve energy efficiency. However, heat pump-based battery thermal management systems in these vehicles continue to consume significant energy, impacting overall range and efficiency. Effective thermal management is essential for maintaining battery performance and safety, particularly in extreme conditions. Although high-fidelity models can capture the complex dynamics of heat pumps, real-time control within model-based optimization frameworks often depends on simplified models, which can degrade system performance. To address this, we propose a novel data-driven grey box control-oriented model (COM) that accurately represents the thermal dynamics of a vapor-compression refrigeration-based heat pump system. This COM is integrated into a model-predictive control (MPC) framework, optimizing thermal management during transient and burst-power operations of the battery pack
Sundar, AnirudhGhate, AtharvaZhu, QilunPrucka, RobertRuan, YeefengFigueroa-Santos, MiriamBarron, Morgan
In this study, we examine the thermal behaviours of lithium-ion battery cells using two widely employed electro-chemistry models: the Equivalent Circuit Model (ECM) and the Newman-Tiedemann-Gauthier-Kim (NTGK) model. Given the critical importance of temperature regulation for the efficiency and lifespan of lithium-ion batteries, this research aims to identify the numerical method that best predicts cell thermal behaviour under constant discharge conditions with 2C, 1C and 0.5C rate. By comparing the outputs of the ECM and NTGK models, we assess their accuracy in predicting key parameters such as State-of-Charge (SoC), current output, voltage, temperature and heat generation. The findings offer valuable insights into the effectiveness of each model in simulating the thermal dynamics of battery cells, providing a basis for optimizing battery performance and longevity in real-world applications.
Wakale, AnilMa, ShihuHu, Xiao
Toyota Motor Corporation pursuing an omnidirectional strategy that includes battery electric vehicle (BEV), plug-in hybrid electric vehicle (PHEV), and fuel cell electric vehicle (FCEV) to accelerate electrification. One of the technical challenges with our xEV batteries which feature good degradation resistance and long battery life, is that regenerative braking cannot be fully effective due to the decrease in regenerative power in some situations, such as low battery temperature. For the electrified vehicles with an internal combustion engine such as PHEVs, the solution has been running the engine to increase deceleration through engine braking during coasting. PHEVs are expected to extend their cruising range and enhance EV driving experience as "Practical BEVs". While increasing battery capacity and enhancing convenience, the restrictions on EV driving opportunity due to low battery temperature may negatively affect PHEV’s appealing. As an alternative, introducing a battery heater
Hoshino, Yu
Thermal management is a key challenge in the design and operation of lithium-ion batteries (LIBs), particularly in high-stress conditions that may lead to thermal runaway (TR). Immersion cooling technology provides a promising solution by offering uniform cooling across all battery cells, reducing the risk of hotspots and thermal gradients that can trigger TR. However, accurately modeling the thermal behavior of such systems, especially under the complex conditions of immersion cooling, presents significant challenges. This study introduces a comprehensive multiscale and Multiphysics modeling framework to analyze thermal runaway and its propagation (TRP) in battery systems cooled by immersion in dielectric fluids. The model integrates both 1D and 3D simulations, focusing on calibrating energy terms at the single-cell level using 3D Computational Fluid Dynamics (CFD). The calibration process includes a detailed analysis of cell chemistries, exothermic heat release, and thermal runaway
Negro, SergioTyagi, RamavtarKolaei, AmirPugsley, KyleAtluri, Prasad
Electric vehicles (EVs) are gaining popularity due to their zero tailpipe emissions, superior energy efficiency, and sustainable nature. EVs have various limitations, and crucial one is the occurrence of thermal runaway in the battery pack. During charging or discharging condition of battery pack may result in thermal runaway condition. This promotes the requirement of effective cooling arrangement in and around the battery pack to avoid localized peak temperature. In the present work, thermal management of a 26650 Lithium iron phosphate (LFP) cell using natural convection air cooling, composite biobased phase change material (CBPCM) and its combination with copper fins is numerically investigated using multi-scale multi dimension - Newman, Tiedenann, Gu and Kim (MSMD-NTGK) battery model in Ansys Fluent at an ambient temperature of 306 K. Natural convection air cooling was found effective at discharge rates of 1C to 3C, maintaining cell temperature below the safe limit of 318 K for 80
Srivastav, DurgeshPatil, Nagesh DevidasShukla, Pravesh Chandra
Lithium-ion batteries (LIBs) are critical components in electric vehicles (EVs) and renewable energy systems. However, conventional cooling techniques for LIBs often struggle to efficiently dissipate heat during fast charging and discharging, potentially compromising performance and safety. This study investigates the thermal performance of immersion cooling applied to an Electric Vehicle (EV) battery module comprised of NCA-chemistry-based cylindrical 21700 format Lithium-ion cells. The effectiveness of immersion cooling in reducing maximum cell temperature, temperature gradient, cell-to-cell temperature differential, and pressure drop within the battery module is evaluated on a detailed 3D model of a 360-cell immersion-cooled battery module that was developed, incorporating a well-established heat generation model based on theoretical analysis and experimental data to simulate the thermal characteristics of the battery system. The effects of the different fluid properties are first
Garcia, AntonioMicó, CarlosMarco-Gimeno, JavierElkourchi, Imad
Items per page:
1 – 50 of 240