Browse Topic: Scale models

Items (2,252)
In light of global warming and power issues, reducing carbon emissions through the use of renewable energy sources has become a global concern. A ubiquitous mechanical motion in daily life is vibration, and one of the hot topics in this field of study is how to capture vibrational vitality and transform it to electrical power. Vibration dynamism can be captured by utilizing tribo-electric nano generators, which operate on the principles of electrostatic induction electrification due to contacts. COMSOL software is used to simulate the interaction between the voltage between the electrodes, the transferred charge, and the electrode moving distance of a triboelectric nanogenerator. A brief description of the simulation process is provided in this work, along with a theoretical interpretation of the simulation outcome. The experimental results revealed that increasing the rpm from 10 to 1000 per second led to substantial increase in Isc from 1.35nA to 225nA, cause enhanced triboelectric
P, GeethaJothiprashanth, R
Effective thermal management is crucial for vehicles, impacting both passenger comfort and safety, as well as overall energy efficiency. Electric vehicles (EVs) are particularly sensitive to thermal considerations, as customers often experience range anxiety. Improving efficiency not only benefits customers by extending vehicle range and reducing operational costs but also provides manufacturers with a competitive edge and potential revenue growth. Additionally, efficient thermal management contributes to minimizing the environmental impact of the vehicle throughout its lifespan. Digital twins have gained prominence across various industries due to their ability to accelerate development while minimizing testing costs. Some applications have transitioned to comprehensive three-dimensional models, while others employ model reduction techniques or hybrid approaches that combine different modeling methods. The discovery of unknown working mechanisms, more efficient and effective control
Palacio Torralba, JavierKapoor, SangeetJaybhay, SambhajiLocks, OlafKulkarni, Shridhar DilipraoShah, Geet
Due to its affordability and environmental friendliness, triboelectric nanogenerators, or TENGs, are a promising and alluring energy harvesting technology. Here, time-dependent finite-element numerical simulations were used to study the performance of dielectric-dielectric TENGs operating in the contact-separation mode. The open-circuit voltage, short-circuit current, and ideal resistance were measured in order to assess the TENG's performance. The findings are consistent with the physical models that are now available for the short-circuit current, which show that the current increases (decreases) with the area of the TENG (the thickness of the material). The open circuit voltage differed from published models according to the area and thickness of the material; the causes for this discrepancy are provided. Because high load resistance values affect charge flow in the TENG cycle (transient state) and performance, a deeper understanding of their effects is also offered. Here, the
P, GeethaSatyam, SatyamJothiprashanth, R
Selective Catalytic Reduction (SCR) systems are crucial for automotive emissions control, as they are essential to comply with stringent emissions regulations. Model-based SCR controls are used to minimize NOx emissions in a broad range of real-word driving scenarios, constantly adapting the urea injection to diverse load and temperature operating conditions, also accounting for different catalyst ageing status. In this framework, Neural Networks (NN) based models offer a promising alternative to reduced-order physical models or map-based controls. This study introduces a hybrid modeling approach for SCR systems, leveraging the integration of machine learning techniques with detailed physics-based models. A high fidelity 1D-CFD plant model of a SCR catalyst, previously calibrated on experimental data, was used as digital twin of the real component. A standardized simulation protocol was defined to virtually characterize the SCR thermal and chemical behavior under the full range of
Sapio, FrancescoAglietti, FilippoFerreri, PaoloSavuca, Alexandru
The Selective Laser Melting (SLM) process is employed in high-precision layer-by-layer Additive Manufacturing (AM) on powder bed and aims to fabricate high-quality structural components. To gain a comprehensive understanding of the process and its optimization, both modeling and simulation in conjunction with extensive experimental studies along with laser calibration studies have been attempted. Multiscale and multi-physics-based simulations have the potential to bring out a new level of insight into the complex interaction of laser melting, solidification, and defect formation in the SLM parts. SLM process encompasses various physical phenomena during the formation of metal parts, starting with laser beam incidence and heat generation, heat transfer, melt/fluid flow, phase transition, and microstructure solidification. To effectively model this Multiphysics problem, it is imperative to consider different scales and compatible boundary conditions in the simulations. In this paper, we
Varma, AdityaGanesh, Kona VeeraRoy Mahapatra, Debiprosad
This article presents a strategy for the virtual calibration of a large-scale model representing a self-piercing rivet (SPR) connection. The connection is formed between a stack of three AA6016-T4 aluminum sheets and one SPR. The calibration process involves material characterization, a detailed riveting process simulation, virtual joint unit tests, and the final large-scale model calibration. The virtual tests were simulated by detailed solid element FE models of the joint unit. These detailed models were validated using experimental tests, namely peeling, single-lap joint, and cross-tests. The virtual parameter calibration was compared to the experimental calibration and finally applied to component test simulations. The article contains both experiments and numerical models to characterize the mechanical behavior of the SPR connection under large deformation and failure
André, VictorCostas, MiguelLangseth, MagnusMorin, David
This paper introduces reduced-order modeling techniques with Artificial Intelligence (AI) for Model-Based Development (MBD). In vehicle development, detailed physical models are replaced by reduced-order models (ROM) to expedite simulations. With recent advancements in AI-based reduced-order modeling, it is expected that modeling work will become more efficient, leading to reduced simulation times. However, the range of simulations (Model-in-the-Loop Simulation - MILS, Hardware-in-the-Loop Simulation - HILS, bench-system) compatible with ROM is limited. To overcome this limitation, this study leverages the ONNX format (Open Neural Network Exchange), a universally supported format among machine learning frameworks, and the Functional Mock-up Interface (FMI), a standard interface format for simulation tools, to enable general-purpose embedded technology with ROM. This study employs a vehicle model in engine surge simulations to validate AI-based reduced-order modeling for MBD. In MILS
Inagaki, TakahiroNasu, TadaakiTakeshige, MinoruIwata, MotofumiNakane, Naoto
In the racing world, speed is everything, and the Formula Student cars are no different. As one of the key means to improve the speed of the car, lightweight plays an important role in the racing world. The weight reduction of unsprung metal parts can not only improve the driving speed, but also effectively optimize the dynamic of the car, so the lightweight design of unsprung parts has attracted much attention. In the traditional Formula Student racing car, the hub and spoke are two independent parts, they are fixed by four hub bolts or a central locking nut, the material of these fasteners is usually steel, so it brings a lot of weight burden. In order to achieve unsprung lightweight, a new type of wheel part design of Formula Student racing car is proposed in this paper. The hub and spoke are designed as integrated aluminum alloy parts, effectively eliminating the mass of hub bolts or central locking nuts. After proper iterative optimization, the part achieves a weight reduction of
Cui, JiaruiChen, Yichao
The design and testing of innovative components and control logics for future vehicular platform represents a challenging task in the automotive field. The use of scale model vehicles constitutes an interesting alternative for testing assessment by decreasing time and cost efforts with a potential benefit in terms of safety. The target of this research work is the development of a customized scale vehicle platform for verifying and validating innovative control strategies in safe conditions and with cost reduction. Consequently, the electrification of a radio-controlled 1:5 scale vehicle is carried out and a customized remote real-time controller is installed onboard. One of the main features of this commercial product is its modular characteristics that allows the modification of some component properties, such as the viscous coefficient of the shock absorbers, the stiffness of the springs and the suspension geometry. The original vehicle is equipped with a 2-stroke internal
Vella, Angelo DomenicoBiondo, LucaTota, AntonioVigliani, Alessandro
To characterize the stress flow behavior of engineering plastic glass fiber reinforced polypropylene (PPGF) commonly used in automotive interior and exterior components, mechanical property is measured using a universal material testing machine and a servo-hydraulic tensile testing machine under quasi-static, high temperature, and high strain rate conditions. Stress versus strain curves of materials under different conditions are obtained. Based on the measured results, a new parameter identification method of the Johnson-Cook (J-C) constitutive model is proposed by considering the adiabatic temperature rise effect. Firstly, a material-level experiment method is carried out for glass fiber reinforced polypropylene (PPGF) materials, and the influence of wide strain rate range, and large temperature span on the material properties is studied from a macroscopic perspective. Then, the model parameters of the J-C constitutive model are identified based on the experimental data, and the
Zheng, Wei-JunLiu, Xiao-AngShangguan, Wen-BinZhang, QuGu, Chen-guang
Efficient and accurate ordinary differential equation (ODE) solvers are necessary for powertrain and vehicle dynamics modeling. However, current commercial ODE solvers can be financially prohibitive, leading to a need for accessible, effective, open-source ODE solvers designed for powertrain modeling. Rust is a compiled programming language that has the potential to be used for fast and easy-to-use powertrain models, given its exceptional computational performance, robust package ecosystem, and short time required for modelers to become proficient. However, of the three commonly used (>3,000 downloads) packages in Rust with ODE solver capabilities, only one has more than four numerical methods implemented, and none are designed specifically for modeling physical systems. Therefore, the goal of the Differential Equation System Solver (DESS) was to implement accurate ODE solvers in Rust designed for the component-based problems often seen in powertrain modeling. DESS is a text-based
Steuteville, RobinBaker, Chad
Wire rod is one of the important products of modern manufacturing. Laying head is widely used for wire rod coiling and storage. Rotors of laying head are typical rotating equipment in which vibration during operation is inevitable. To address the problem of achieving precise dynamic balance for the laying head rotor with complex and asymmetrical structures, a vibration test is performed on the rotor to determine its primary cause. Modal analysis is conducted on the laying head rotor using finite element analysis, with the critical speed calculated. Unbalance response analysis of the rotor is executed, coupled with the rotor structure to identify appropriate balancing planes. The rotor’s three-dimensional model is used to calculate the distribution of the unbalance amount. The balancing process effectively decreased the rotor’s eccentricity and vibration intensity with no significant increase in overall mass, meeting operational requirements. This method significantly increased
Tang, Yue
The sinking and trimming of the hull in the channel would directly affect the handling and navigation safety of the ship. In view of the ship sinking, a series of empirical formulas to estimate the subsidence have been put forward for vessel in spacious shallow water areas. However, most of the equations are based on seagoing vessels. They are not suitable for inland ships with small scales, shallow drafts, and narrow navigation width. Till now, research on ship squat in intermediate channel has not yielded more practical results. Here, a generalized physical model is used to study the sinking of 500t class ships in restricted intermediate channel under different channel widths, water depths, and speeds. The main factors affecting the squat are analyzed, the empirical relation is compared with the measured squat. The Barrass equation is modified, and the calculation relation of the settlement suitable for inland river ships is proposed. The correlation coefficient R 2 of the modified
Long, LijiMiao, JilunZhao, WanxingHuang, Chenglin
Hydrogen has been identified as a promising decarbonization fuel in internal combustion engine (ICE) applications in many areas including heavy-duty on- and off-road, power-generation, marine, etc. Hydrogen ICEs can achieve high power density and very low tailpipe emissions. However, there are challenges; designing systems for a gaseous fuel with its own specific mixing, burn rate and combustion control needs, which can differ from legacy products. The primary pollutant of concern for Hydrogen ICEs is NOx which can be addressed by running the engine at very lean equivalence ratios and the use of Exhaust Gas Recirculation (EGR). Computation Fluid Dynamics (CFD) is a valuable tool to model the combustion characteristics under different conditions, as presented in SAE-2023-01-0197 [1], which can also be used to predict thermal loading. Being able to determine the thermal distribution and temperatures of the power cylinder components has always been critical to the design and development
Bell, DavidGrimley, PeterHynous, JanShapiro, EvgeniyOsborne, RichardValenta, Lukáš
With the increase of motor speed and the deterioration of operating environment, it is more difficult to predict the transient temperature field (TTF). Meanwhile, it is difficult to obtain the temperature test dataset of key nodes under various complete road conditions, so the cost of bench test or real vehicle test is high. Therefore, it is of great significance to establish a high fidelity, lightweight temperature prediction model which can be applied to real vehicle thermal management for ensuring the safe and stable operation of motor. In this paper, a physical model simulating electromagnetic-heat-flow multi-physical coupling of permanent magnet synchronous motor (PMSM) in electric drive gearbox (EDG) is established, and the correctness of the model is verified by the actual EDG bench test. Secondly, combined with the high order lumped parameter thermal network (LPTN) model derived from the multi-physics coupling model, the ten-node thermal network model of PMSM is established by
Tang, PengZhao, ZhiguoLi, Haodi
Virtual sensing, i.e., the method of estimating quantities of interest indirectly via measurements of other quantities, has received a lot of attention in various fields: Virtual sensors have successfully been deployed in intelligent building systems, the process industry, water quality control, and combustion process monitoring. In most of these scenarios, measuring the quantities of interest is either impossible or difficult, or requires extensive modifications of the equipment under consideration – which in turn is associated with additional costs. At the same time, comprehensive data about equipment operation is collected by ever increasing deployment of inexpensive sensors that measure easily accessible quantities. Using this data to infer values of quantities which themselves are impossible to measure – i.e., virtual sensing – enables monitoring and control applications that would not be possible otherwise. In this concept paper, we provide a short overview of virtual sensing and
Ofner, Andreas BenjaminSjoblom, JonasPosch, StefanNeumayer, MarkusGeiger, BernhardSchmidt, Stephan
This paper presents current research comparing gaseous and vaporous cavitation in lubricant flows obtained by means of digital high-speed photography in un-precedented detail. Hydrodynamic journal bearings are compact and guarantee a nearly wear- resistant operation. These features make journal bearings the first choice for many applications. However, under particular operational conditions, e.g. a highly dynamic load, cavitation can occur which can lead to bearing failures. For the selected case of suction cavitation these conditions are characterized by high eccentricity combined with a rapid variation of the lubricating film thickness. The work at hand presents a new experimental approach to study suction cavitation in a scaled bearing model. Moreover, mechanical and fluid dynamic similarity laws are described which enable the transfer of bearing operation conditions into the model experiment and vice versa. An extensive literature research yields the parameters of operating
Reinke, PeterRienaecker, AdrianSchmidt, MarcusBeckmann, Tom
Global climate change is a major concern worldwide and most refrigerants which are being used today are Hydro-fluorocarbon (HFC), which are potent green house gases. With the rising popularity of electric vehicles, there has been an increased demand for effective and efficient cooling system, not only for cabin cooling for bus but for battery pack Thermal Management Systems also. This has led to an increase in the refrigerant amount and it is even more in case of commercial electric vehicle. Alternate refrigerant with low global warming potential like R1234yf (GWP = 4), Co2 (GWP = 1), R- 152a (GWP = 124) emerged to cater this challenge; But due to their high cost, risk regarding flammability and relative performance, some researchers found secondary loop cooling system as the next possible solution. In secondary loop cooling system Water-Ethylene glycol mixture circulate inside the vehicle cabin and exchange heat with refrigerant loop, which primarily circulate in small loop outside
Sharma, NishantGoel, ArunkumarSuman, SaurabhKushwah, Yogendra Singh
1d multi-domain modeling is a powerful tool for the fast prototyping of battery packs for electric vehicles. It can help identify the optimal layout for structural and thermal aspects and then support the battery sizing process. On the other hand, its simplicity may fail whereas precise simulations are needed. For example, a catastrophic event such as the thermal runaway can be triggered by a local peak of temperature on a single cell of the battery pack and then spread to the others. For this reason, the surface temperature distribution of a battery is crucial, and 1d models provide only an average value. Conversely, 3d models can provide this information even if at higher costs, in terms of time and computational efforts. 3d models of a Li-Po battery are not common in the literature because of the high complexity of the internal structure of a cell and the availability of experimental data for validation. This paper follows a previous work where a 3d model of a Li-Po cell was
Magri, LucaSequino, LuigiFerrari, Cristian
The present paper reports experimental and numerical research activities devoted to deeply characterize the behavior and performance of a Heavy Duty (HD) internal combustion engine fed by compressed natural gas (CNG). Current research interest in HD engines fed by gaseous fuels with low C/H ratios is related to the well-known potential of such fuels in reducing carbon dioxide emissions, combined to extremely low particulate matter emissions too. Moreover, methane, the main CNG component, can be produced through alternative processes relying on renewable sources, or in the next future replaced by methane/H2 blends. The final goal of the presented investigations is the development of a predictive 0D combustion submodel within the framework of a 1D numerical simulation platform. To this aim, an experimental campaign has been carried out on a six-cylinder HD spark ignition engine CNG engine, Euro VI d compliant, typically employed in road vehicle applications, at the test bench, in order
Fraioli, ValentinaDi Maio, DarioNapolitano, PierpaoloLanni, DavideD'Antuono, GabrieleGalloni, EnzoCallu, CyrilleMaestro, Dario
This paper presents the development of a method for the fatigue life analysis in chassis of road implements from power spectral densities, bringing a new possibility for fatigue analysis and reducing the probability of a prototype having fatigue failure. The method was executed by deploying triaxial and uniaxial accelerometers at various points on the road implement chassis, and performing finite element analysis, while it was driven on various road surfaces. Within the proposed method, three types of analyzes were performed: the operational modal analysis; harmonic and modal analysis; and fatigue life analysis. To perform the operational modal analysis, the signals were treated with low-pass and window filters and converted to the frequency domain. As a result, the modal data referring to the implement are inserted as properties of a virtual chassis model in finite elements to obtain frequency response functions through harmonic and modal analysis. A matrix of power spectral densities
Costa, Felipe AcordiVieceli, AlexandreCorso, Leandro LuísBernardi, Rodrigo
Icing is a severe hazard to aircraft and in particular to unmanned aerial vehicles (UAVs). One important activity to understand icing risks is the prediction of ice shapes with simulation tools. Nowadays, several icing computational fluid dynamic (CFD) models exist. Most of these methods have been originally developed for manned aircraft purposes at relatively high Reynolds numbers. In contrast, typical UAV applications experience Reynolds numbers an order of magnitude lower, due to the smaller airframe size and lower airspeeds. This work proposes a set of experimental ice shapes that can serve as validation data for ice prediction methods at low Reynolds numbers. Three ice shapes have been collected at different temperatures during an experimental icing wind tunnel campaign. The obtained ice shapes represent wet (glaze ice, −2 °C), mixed (−4 °C), and dry (rime ice, −10 °C) ice growth regimes. The Reynolds number is between Re=5.6…6.0×105, depending on the temperature. The ice shapes
Hann, RichardMüller, NicolasLindner, MarkusWallisch, Joachim
High altitude ice crystals have led to instances of ice accretion on stationary compressor surfaces in aeroengines. Rollback, surge and stall events are known to have been instigated through such accretions due to aerodynamic losses related to ice growth, damage and flameout due to ice shedding. The prevalence of these events has led to a change in certification requirements for icing conditions. Development of accurate numerical models allows the costs of certification and testing to be minimised. An in-house computational code was developed at the Oxford Thermofluids Institute to model glaciated and mixed-phase ice crystal icing. The Ice Crystal Icing ComputationaL Environment (ICICLE) code, comprises a frozen 2D flowfield solution, Lagrangian particle tracking, particle heat transfer and phase change and particle surface interaction modelling. In this paper the ICICLE code is developed into a 3D modelling environment, including 3D particle tracking and modelling of particle wall
Parker, LiamMcGilvray, MatthewGillespie, David
This paper presents a novel fully-automatic remeshing procedure, based on the level-set method and Delaunay triangulation, to model three-dimensional boundary problems and generate a new conformal body-fitted mesh. The proposed methodology is applied to long-term in-flight ice accretion, which is characterized by the formation of extremely irregular ice shapes. Since ice accretion is coupled with the aerodynamic flow field, a multi-step procedure is implemented. The total icing exposure time is subdivided into smaller time steps, and at each time step a three-dimensional body-fitted mesh, suitable for the computation of the aerodynamic flow field around the updated geometry, is generated automatically. The methodology proposed can effectively deal with front intersections, as shown with a manufactured example. Numerical simulations over a NACA0012 swept wing both in rime and glaze conditions are compared with the experimentally measured ice shapes from the 1st AIAA Ice Prediction
Donizetti, AlessandroRausa, AndreaBellosta, TommasoRe, BarbaraGuardone, Alberto
Under contract to Transport Canada (TC) and with joint funding support from the Federal Aviation Administration (FAA), a vertical stabilizer common research model (VS-CRM) has been designed and built by the National Research Council of Canada (NRC). This model is a realistic, scaled representation of modern vertical stabilizer designs without being specific to a particular aircraft. The model was installed and tested in the NRC 3 m × 6 m Icing Wind Tunnel in late 2021/early 2022. Testing was led by APS Aviation Inc., with support from NRC and NASA, in order to observe the anti-icing fluids flow-off behavior with and without freezing or frozen precipitation during simulated take-off velocity profiles. The model dry-air aerodynamic properties were characterized using flow visualization tufts and boundary layer rakes. Using this data, a target baseline configuration was selected with a yaw angle equal to 0° and rudder deflection angle equal to -10°. Testing with fluids and precipitation
Clark, CatherineRuggi, Marco
This work presents a comprehensive numerical model for ice accretion and Ice Protection System (IPS) simulation over a 2D component, such as an airfoil. The model is based on the Myers model for ice accretion and extended to include the possibility of a heated substratum. Six different icing conditions that can occur during in-flight ice accretion with an Electro-Thermal Ice Protection System (ETIPS) activated are identified. Each condition presents one or more layers with a different water phase. Depending on the heat fluxes, there could be only liquid water, ice, or a combination of both on the substratum. The possible layers are the ice layer on the substratum, the running liquid film over ice or substratum, and the static liquid film between ice and substratum caused by ice melting. The last layer, which is always present, is the substratum. The physical model that describes the evolution of these layers is based on the Stefan problem. For each layer, one heat equation is solved
Gallia, MariachiaraRausa, AndreaMartuffo, AlessandroGuardone, Alberto
Fuel tank is considered as safety component in the vehicle, and it has to be tested to meet the safety requirements as per AIS 095. Earlier, fuel tanks were manufactured by using Hot dipped cold rolled steel material and the weld zones are applied with Anti-corrosive coating. Few fuel tanks were reported with Corrosion problems. The root cause analysis was carried out considering the raw material, manufacturing process, transpiration, storage and usage. As an improvement, the new fuel tank is designed to eliminate the limitations of the existing fuel tank. 3D modeling was done to check space and mounting requirement in the layout and used for volume calculations. FE analysis was performed to check structural stability. Emphasis given on Interchange-ability to cater the new fuel tanks in place of old as spares requirement. The fuel tank has developed with Alumina steel material. Alumina steel is a material with the strength property of steel and corrosion resistant property of Aluminium
KUMARAN, RAJASEKARm, vadiveluSG, ArunAdepu, RakeshKC, satheesh
Motor grader is self-propelled, versatile machine widely used for road construction and maintenance in mining and construction applications. It required working in rugged terrain with uneven and slippery surfaces. Probability of rollover in motor grader is more due to the vehicle profile and high centre of gravity. In light of the above, Roll over Protective Structure (ROPS) is essential to safe guard the operator from any fatal injuries / life during the operation of the equipment at different terrain conditions. Considering DGMS (Directorate of General Mines and safety) requirements, a rugged two post Rollover Protective Structure (ROPS) was designed as per ISO 3471 criteria for ROPS and Falling object Protection Structure (FOPS) as per ISO 3449 Material selection for ROPS and FOPS is one of significant factor in design process by meeting the design criteria. It should have dual characteristic, firstly, it is expected to tough enough to withstand sudden impact forces. Secondly, it
Varadaraj, Kumarhs, Satish Chandra
This paper presents a workflow that allows noise, vibration and harshness (NVH) engineers to objectively predict the passenger compartment noise levels due to structure-borne and radiated noise arising from the motor of an electric powertrain (ePowertrain). The optimized simulation workflow enables transmission, vehicle design engineers and NVH analyst to collaborate and address potential noise concerns well before production of the ePowertrain unit and vehicle. The NVH targets can be cascaded through a series of transfer functions, linking the electromagnetic (EM) excitation from the motor to passenger compartment noise level requirements. The workflow involves the use of Romax Spectrum and Actran software. The structural modelling of the ePowertrain including the vibration response of the ePowertrain is calculated using Romax Spectrum, whilst Actran computes the acoustic radiation around the complete vehicle, and Virtual SEA then covers the calculation to interior and exterior
de Walque, CyrilJamaluddin, Riza
Extremely uncomfortable levels of bounce and pitch vibrations are produced when a CV moves over uneven terrain. The present study was carried out to ascertain the vibrational response at the driver’s, commander’s and trooper’s seats. A 23 -degrees of freedom (DOF) lumped parameter 3-D model of a combined CV and human body was made. The vehicle had 15 DOF corresponding to the bounce, pitch and roll of the hull (sprung mass) and bounce motions of the 12 wheel stations (unsprung masses) on either side. The human body was idealized as having 8 DOF corresponding to bounce motions of the pelvis, abdomen, diaphragm, thorax, torso, back and head. The seat was also assigned a bounce DOF. The lumped masses of the body parts were distributed and connected by springs. The differential equations of motion for the linear rigid body model were formulated and the natural frequencies of different parts of the human body and the military tank were determined by eigenvalue analysis using MATLAB
Chandramohan, SujathaSinha, Adheesh
In recent years, the electric vehicle industry has been booming rapidly to decarbonize the world. One of the major concerns in an electric vehicle is the noise emitted from the electric powertrain system, which affects the driving comfort assistance in electric vehicles. Thus, we have to find the methodology to measure the noise level in an automotive transmission system during the design stage itself. This drives us to develop the methodology on a simple design, having a structural and fluid coupling and then followed by an acoustics analysis. A Transient CFD simulation is performed to generate an excitation source for noise; excitation forces observed in the transient simulation are converted into the frequency domain by performing a fast Fourier transform (FFT). To understand this structural behavior, modal analysis is performed for a simple test model to identify the critical modes. Harmonic excitation sources from CFD fluid coupling are imported to a structural model, replicating
Krishnan, ParanthamanYang, ZaneVelayudham, VijayakumarDuraipandi, Arumuga Pandian
This investigation utilizes a correlated fluid-structure interaction (FSI) model of the torque converter and clutch assembly to perform a pseudo transient clutch engagement at steady state operating conditions. The pseudo transient condition consists of a series of nine steady state simulations that transition the torque converter clutch from fully released to near full lockup at a constant input torque and output speed representative of a highway cruising speed. The flow and pressured field of the torque converter torus and clutch are solved using a CFD model and then passed along to a transient structural model to determine the torque capacity of the lockup clutch. Bulk property assumptions regarding the friction material, deformation of the clutch plate, and deflection of supporting structures were made to simplify the model setup, run time, and solution convergence. Telemetry pressure measurements acquired in an operating torque converter under similar operating conditions on a
Beldar, AniketRobinette, DarrellBlough, Jason
Air springs with auxiliary chambers (ASAC) are widely used in automotive suspension systems. The introducing of the auxiliary chamber and the connecting flow passage makes the system more complex, especially in which case an additional resonance peak caused by the air inertia in a connecting pipe appears. To characterize the nonlinear dynamic characteristics, this paper proposes a novel physical-neural network hybrid modeling method for ASACs. Firstly, experiments are carried out to measure the dynamic characteristics of ASACs. Then, based on the thermodynamic principle, a nonlinear dynamic characteristic model for the ASAC is developed and a linearized process is performed to obtain a linearized physical model. Due to the amplitude dependence and frequency dependence in the dynamic characteristics of ASACs, the physical model cannot accurately characterize these nonlinearities. To compensate for the errors caused by the uncaptured frictional damping and nonlinear air resistance, a
Zheng, YiqianShangguan, Wenbin
Prospective combustion engine applications require the highest possible energy conversion efficiencies for environmental and economic sustainability. For conventional Spark-Ignition (SI) engines, the quasi-hemispherical flame propagation combustion method can only be significantly optimized in combination with high excess air dilution or increased combustion speed. However, with increasing excess air dilution, this is difficult due to decreasing flame speeds and flammability limits. Pre-Chamber (PC) initiated jet ignition combustion systems significantly shift the flammability and flame stability limits towards higher dilution areas due to high levels of introduced turbulence and a significantly increased flame area in early combustion stages, leading to considerably increased combustion speeds and high efficiencies. By now, vehicle implementations of PC-initiated combustion systems remain niche applications, especially in combination with lean mixtures. This is also due to challenges
Salerno, FrancescoBargende, MichaelKulzer, AndréGrill, MichaelBurkardt, PatrickGünther, MarcoPischinger, StefanVillforth, Jonas
A multi-dimensional model of the spark ignition process for SI engines was developed as a user defined function (UDF) integrated into the commercial engine simulation software CONVERGE CFD. The model simulates spark plasma movement in an inert flow environment without combustion. The UT model results were compared with experiments for arc movement in a crossflow and also compared with calorimeter measurements of thermal energy deposition under quiescent conditions. The arc motion simulation is based on a mean-free-path physical model to predict the arc movement given the contours of the crossflow velocity through the gap and the interaction of the spatially resolved electric field with the electrons making up the arc. A further development is the inclusion of a model for the thermal energy deposition of the arc as it is stretched by the interaction of the flow and the electric field. A novel feature of this model is that the thermal energy delivered to the gap at the start of the
Kim, KyeongminTambasco, CoreyHall, MatthewMatthews, Ron
Good heat dissipation of Lithium battery can prevent the battery from shortening its life due to rapid aging or thermal runaway. In this paper, an air-cooled structure of 5 series and 3 parallel battery packs is designed, which combines the advantages of series and parallel air ducts and optimizes the heat dissipation effect and the space ratio of air ducts. First, the heat generation model of NCR18650PF lithium battery is established, and the heat generation rate and time under different discharge rates are calculated. Combined with the working conditions of the battery itself, the necessity of battery pack heat dissipation was found. Secondly, a preliminary three-dimensional model of the battery pack heat dissipation was established, and a simulation analysis was carried out to study the influence of the inclination angle of the inlet duct, the arrangement of the air inlet and outlet, and the influence of the deflector on the heat dissipation effect, and the optimization analysis was
Ding, KangjieLin, ZhenmaoXie, Beichen
The accuracy of tire forces directly affects the vehicle dynamics model precision and determines the ability of the model to develop the simulation platform or design the control strategy. In the high slip angle, due to the complex interactions at tire-road interfaces, the forces generated by the tires are high nonlinearity and uncertainty, which pose issues in calculating tire force accurately. This paper presents a hybrid physical and data-driven tire force calculation framework, which can satisfy the high nonlinearity and uncertainty condition, improve the model accuracy and effectively leverage prior knowledge of physical laws. The parameter identification for the physical tire model and the data-based compensation for the unknown errors between the physical tire model and actual tire force data are contained in this framework. First, the parameters in the selected combined-slip Burckhardt tire model are identified by the nonlinear least square method with tire test data. Then, the
Yang, HuanningLi, ZihanYang, BoXiongWang, Ping
Flashing lights on emergency and maintenance vehicles should be critical components to alerting, informing and managing drivers as they navigate around work zones, vehicle accidents and other roadway emergency incident scenes. These vehicles often also use distinctive colors and markings to identify the type of vehicle and potentially provide drivers with information about the nature of the incident they are approaching. In order to begin to understand how these elements (flashing lights and vehicle/marking colors) contribute to perception, a study was carried out in which participants viewed pairs of roadway scenes using scale model vehicles and lights adjusted to produce similar apparent intensities as full-scale lighting systems. In some cases the colors of the flashing lights were coordinated with those of the vehicle and its reflective markings, and in other cases the colors were not coordinated. Participants reported which scenes appeared to be fire emergencies, as opposed to a
Bullough, John D.Skinner, Nicholas P.Rea, Mark S.
The diesel particulate filter (DPF) is an effective device for reducing particulate emissions from diesel engines, while its durability and reliability after long-term use are causes for concern. Usually, particulates are considered to be uniformly deposited in DPF channels to form a cake or end plug, however, recent studies have found that a “middle channel deposit” phenomenon of particulates can form a bridge near the middle of the DPF channel. This phenomenon has serious adverse effects on the durability and reliability of the DPF, including abnormally increased pressure drop and frequent regeneration. Since the width of the DPF channel is only about 1-2 millimeters, conventional methods cannot observe the particulate deposition process inside the DPF. In order to deeply understand the mechanism for the formation of the bridge phenomenon, this paper establishes a verified three-dimensional model of the DPF channel, including two 1/4 inlet channels and two 1/4 outlet channels, so as
Duan, LishuangTAN, PiqiangChen, Ying-jieLou, DimingHu, Zhiyuan
There is an increasing need for lightweight structures in the transportation industry, and within these lightweight structures occupant safety is continually important to all stakeholders. Standard single and multi-material topology optimization (MMTO) techniques are effective for designing lightweight structures subjected to linear objectives and constraints but cannot consider crashworthiness. Crashworthiness must be evaluated using explicit dynamic simulation techniques, as a crash event contains geometric and material nonlinearities which cannot be captured by linear static finite element simulations. Explicit dynamic simulations prevent the calculation of sensitivity derivatives required for conventional gradient-based structural optimization strategies. This paper describes a design tool for multi-material topology optimization considering crashworthiness using the equivalent static load (ESL) method. The ESL method is used to generate linear static sub-problems which replicate
Hardman, AndrewSirola, TimHuang, YuhaoMorris, ZaneShi, YifanKim, Il YongPamwar, ManishSangha, Balbir
The objective of this document is to define basic terms and definitions and to provide general guidance for M&S of aircraft EPS
AE-7M Aerospace Model Based Engineering
The purpose of this article was to determine the failure safety margins of the front braking system of a Honda CTX700 motorcycle and to perform a substantive stress analysis on the system, as well as to verify the stresses using FEMAP. It should be noted that in this finite element analysis (FEA), the connections between components are modeled using linear-contact connections that exert forces on adjacent surfaces and are not trivially meshed as one solid with coincident grids with two different section material properties. The first part of the work involved accurately measuring the geometry of each part and three-dimensional (3D) modeling of all components. Measurements were taken via the trivial methods of using a ruler and caliper, and then the 3D model was generated in Solidworks by digitizing the geometric parameters. Some parts of the system were simplified in the 3D model to ensure proper meshing of the model. Cavities and complex geometries, like fillets and chamfers, were
Javidinejad, AmirOrensztein, Hunter J.Ramirez, MarcoBerman, Jack
The soot emission is one of the main limiting factors in the Diesel engine performance, due to the heat losses caused during its formation. Studies show that the formation of this product can be reduced by adding oxygenated fuels to replace part of fossil fuels. There is a growing demand for computational models of engines powered by renewable fuels, capable of predicting operational characteristics in different conditions. The objective of this work is to determine, by using computational fluid dynamics (CFD) model, the effects of different percentages of biodiesel on the spatial distributions of soot inside the combustion chamber. Performance and emissions, as well as spatial distributions of soot and temperature were evaluated simulating cases with 8%, 10%, 13%, 15%, 50%, and 100% for mixtures of biodiesel. The numerical modeling was based on the physical parameters of a MWM 229 Diesel engine generator and validated through experimental tests using 8% of biodiesel on the diesel
Pires Ferreira, Bruno Eustáquiode Oliveira, AlexGuerra Moreira, Viníciusde Morais Hanriot, Sérgio
In this article, a 300-ton truck crane was used as the research object, and the data and experience of telescopic boom design were integrated to optimize the design research under three dangerous working conditions of the telescopic boom. Three-dimensional (3D) modeling software and finite element software were used to model and statistically analyze the truck crane telescopic boom. Then the correctness of the finite element model was verified by static experiments, and the design was optimized. Under the condition of satisfying the strength and stiffness, the telescopic crane boom was optimized by using the response surface optimization module in Ansys workbench software to be lightweight, and more satisfactory results were obtained. Finally, through the modal and flexural analysis of the optimized model, ideas and suggestions were provided for the further optimization of the telescopic boom
Wang, ChaosongXing, Bangsheng
This study consists of a novel approach based on Classical Mechanics to explain the aerodynamic forces on a body in motion relating to a fluid. This new approach does not require the presence of viscosity to generate the forces and is compatible with the Kutta condition. The physical reasoning of the approach is outlined with the introduction of the aerodynamic suction effect of the body. Next, the mathematical expressions and a code that models the physical phenomena are developed. These are applied for the case of a sphere immersed in a moving fluid and then an airfoil. An initial validation of this new approach is performed by a comparison of the theoretical results and the available results of the National Advisory Committee for Aeronautics (NACA) airfoils. This new mathematical approach is especially valid for high Reynolds numbers where viscosity can be neglected. The new codes based on this approach is less complex than other computational fluid dynamics (CFD) approaches based
Castillo Acero, Miguel A.Doria, Javier J.
Point cloud objects have gained popularity in three-dimensional (3D) printing recently due to advancements in reverse engineering technology. Fabricating an object with a fused deposition modeling (FDM) printer requires converting the object to layered contours, which involves a slicing process. The slicing process of a point cloud object usually requires reconstructing a 3D object from a point cloud, which requires users’ deep understanding of 3D modeling software and a laborious work process. To avoid these problems, the direct slicing of point cloud objects is gaining more popularity. This research work proposes an adaptive slicing approach from point cloud objects directly without surface reconstruction. The adaptive slicing maintains the global geometry error while requiring a smaller number of fabrication layers and printing time. A new error profile used in the adaptive slicing approach is introduced. It approximates the geometry error from the point cloud directly based on the
Moodleah, SamartKirimasthong, Khwunta
Accurate fault diagnosis is critical to the safe and efficient operation of lithium-ion battery systems. However, various faults in battery systems are difficult to detect and isolate due to their similar features. This paper proposes a model-based multi-fault diagnosis method to detect and isolate the current, voltage, and temperature sensor faults, short circuit faults, and connection faults in the lithium-ion battery systems. An electro-thermal model with fault information is established and used to construct the structural model. Structural analysis theory is applied to design diagnostic tests sensitive to multiple faults. To improve the accuracy and robustness of residual generation, the adaptive extended Kalman filter is introduced to battery state estimation. The multi-fault detection and isolation are implemented using residual evaluation based on the cumulative sum algorithm. Furthermore, a fault indicator used to distinguish short circuit and connection faults is presented
Zhang, KaiHu, XiaosongDeng, ZhongweiLin, Xianke
The future of heavy trucking will require greater aerodynamic improvements and will involve active and automated systems that tailor varied parameters to optimize energy efficiency over a broad operational range. Continuous advancement of accuracy and precision is needed to realize these ever-smaller aerodynamic gains and to generate more detailed aerodynamic characterizations to feed these system-wide optimizations. To accomplish this, a comprehensive aerodynamic development approach is needed and should include computational fluid dynamics, operational testing, and wind tunnel testing. In 2016, a high-fidelity 1/3 scale wind tunnel model of a tractor-trailer heavy truck was developed for Reynolds equivalent wind tunnel testing with full coverage rolling road ground simulation. The model and support system were designed and built for use in the Windshear rolling road wind tunnel. The Windshear wind tunnel offers a large high-speed rolling road system enabling a more advanced
Brady, BenBrzustowicz, John
Current structural design methods for high-speed naval craft rely heavily on empiricism. Though these methods have been employed reliably for a number of years, it is likely that an unknown level of conservatism exists in the prediction of both global and local impact loads to ensure the vessel’s structural design is robust
Future combustion engine applications require highest possible energy conversion efficiencies to reduce their environmental impact and be economically competitive. So far, spark-ignition (SI) engine combustion development mostly consisted of optimizing the hemispherical flame propagation combustion method. Thereby, a significant efficiency increase is only achievable in combination with high excess air dilution or increased combustion speed. However, with increasing excess air dilution, this is difficult due to decreasing flame speeds and flammability limits. Simultaneously, researchers have been investigating homogeneous charge compression ignition (HCCI) that achieves higher efficiencies due to its rapid volume reaction combustion and also enables high excess air dilution. However, the combustion is complex to control as it is initiated by auto-ignition (AI) processes. In-cylinder conditions reliably need to be reproduced to prevent damaging pre-ignitions. Consequently, HCCI has only
Salerno, FrancescoBargende, MichaelKulzer, André CasalGrill, Michael
Items per page:
1 – 50 of 2252