Browse Topic: Mathematical models
With the implementation of increasingly stringent regulations for pollutant emissions, such as Proconve L8 [1], which requires a 37% reduction in NOx and non-methane organic gases (NMOG) emissions for light passenger vehicles compared to previous regulations, the automotive engineering community is constantly evolving to develop prediction models that are capable of predicting the performance of Internal Combustion Engines (ICE). With this, the society search solutions to increase fuel conversion efficiency and reduce fuel emissions. In a special case, related to the study of the turbulent jet ignition (TJI) engine, there was a need to develop a refined numerical model that allows for the accurate design of the ignition pre-chamber geometry. In view of this, a one-dimensional modeling was carried out in the GT-SUITE ® software, in its modeling environment for Internal Combustion Engines (ICE), GT-POWER ®, with the objective of determining its ideal volume, parameters such as internal
Large farms cultivating forage crops for the dairy and livestock sectors require high-quality, dense bales with substantial nutritional value. The storage of hay becomes essential during the colder winter months when grass growth and field conditions are unsuitable for animal grazing. Bale weight serves as a critical parameter for assessing field yields, managing inventory, and facilitating fair trade within the industry. The agricultural sector increasingly demands innovative solutions to enhance efficiency and productivity while minimizing the overhead costs associated with advanced systems. Recent weighing system solutions rely heavily on load cells mounted inside baling machines, adding extra costs, complexity and weight to the equipment. This paper addresses the need to mitigate these issues by implementing an advanced model-based weighing system that operates without the use of load cells, specifically designed for round baler machines. The weighing solution utilizes mathematical
This study investigates an optimal control strategy for a battery electric vehicle (BEV) equipped with a high-speed motor and a continuously variable transmission (CVT). The proposed dual-motor powertrain model activates only one motor at a time, with Motor A routed through a CVT and Motor B through a fixed gear. To improve energy efficiency, two optimization methods are evaluated: a quasi-steady-state map-based approach and a dynamic programming (DP) method. The DP approach applies Bellman’s principle to derive the globally optimal CVT ratio and motor torque trajectory over the WLTC cycle. Simulation results demonstrate that the DP method significantly improves overall efficiency compared to traditional control logic. Furthermore, the study proposes using DP-derived maps to refine practical control strategies, offering a systematic alternative to conventional experimental calibration.
The objective of this effort is to create a methodology to posture and position equipped manikins in Computer-Aided Design (CAD) software for ground vehicle workstation design. A collaborative effort is taking place to evaluate the current practices used to posture and position both physical and digital human representations. The goal of the group is to determine how best to utilize posture and position data to update positioning procedures. Data from the Seated Soldier Study and follow-on studies is being utilized to develop statistical models using multivariate analysis methods. Design is the first area of focus across the broader design-develop-evaluate process. The products to address this need are parametric CAD accommodation models with imbedded Digital Human Models (DHMs). Developing updated positioning procedures for each of the manikins will provide a traceable justification for positioning manikins based on Soldier data.
Items per page:
50
1 – 50 of 7312