Browse Topic: Mathematical models
The driving capability and charging performance of electric vehicles (EVs) are continuously improving, with high-performance EVs increasing the voltage platform from below 500V to 800V or even 900V. To accommodate existing low-voltage public charging stations, vehicles with high-voltage platforms typically incorporate boost chargers. However, these boost chargers incur additional costs, weight, and spatial requirements. Most mature solutions add a DC-DC boost converter, which results in lower charging power and higher costs. Some new methods leverage the power switching devices and motor inductance within the electric drive motor to form a boost circuit using a three-phase current in-phase control strategy for charging. This approach requires an external inductor to reduce charging current ripple. Another method avoids the use of an external inductor by employing a two-parallel-one-series topology to minimize current ripple; however, this reduces charging power and increases the risk
This paper presents a new regression model-based method for accurate predictions of stiffness of different glass laminate constructions with a point-load bending test setup. Numerical FEA models have been developed and validated with experimental data, then used to provide training data required for the statistical model. The multi-variable regression method considered six input variables of total glass thickness, thickness ratio of glass plies as well as high-order terms. Highly asymmetrical, hybrid laminates combining a relatively thick soda-lime glass (SLG) ply joined with a relatively thin Corning® Gorilla® Glass (GG) ply were analyzed and compared to standard symmetrical SLG-SLG constructions or a monolithic SLG with the same total glass thickness. Both stiffness of the asymmetrical laminates and the improvement percentage over the standard symmetrical design can be predicted through the model with high precision.
Items per page:
50
1 – 50 of 7245