Browse Topic: Hardware-in-the-loop (HIL)

Items (690)
The hybrid electric drive system has the potential to make a significant contribution to the energy sustainability of the automotive industry. This paper investigates the improved adaptive equivalent consumption minimization strategy (A-ECMS) for a multi-mode series-parallel hybrid electric vehicle. First, a basic ECMS algorithm for the series-parallel vehicle is established, which considers the instantaneous optimal torque matching in the electric, serial hybrid, and engine driving modes. Under the condition that the future traffic information scenario is known, it is desired to realize the global optimal planning based on the combination of dynamic programming (DP) and ECMS. The SOC, engine speed, and torque results calculated by the DP strategy are used as benchmarks to develop the improved SOC-AECMS and S-AECMS strategies, which better incorporate the advantages of the global optimization results. Finally, a hardware-in-the-loop simulation platform is set up to validate the real
Zhu, JingyuHan, MengweiLiu, ChongfanYang, ChenfanNishida, Keiya
With the continuous development of automotive intelligence, there is an increasing demand for vehicle chassis systems to become more intelligent, electronically controlled, integrated, and lightweight. In this context, the steer-by-wire system, which is electronically controlled, offers high precision and fast response. It provides greater flexibility, stability, and comfort for the vehicle, thus meeting the above requirements and has garnered widespread attention. Unlike traditional systems, the steer-by-wire system eliminates mechanical components, meaning the road feel cannot be directly transmitted to the steering wheel. To address this, the road feel, which is derived from the vehicle's state or integrated with environmental driving data, must be simulated and transmitted to the steering wheel through a road feel motor. This motor generates feedback that mimics the road feel, similar to that experienced in a conventional steering system. This simulation enhances the driver's
Li, ShangKaku, ChuyoZheng, HongyuZhang, Yuzhou
Traditional methods for developing and evaluating autonomous driving functions, such as model-in-the-loop (MIL) and hardware-in-the-loop (HIL) simulations, heavily depend on the accuracy of simulated vehicle models and human factors, especially for vulnerable road user safety systems. Continuation of development during public road deployment forces other road users including vulnerable ones to involuntarily participate in the development process, leading to safety risks, inefficiencies, and a decline in public trust. To address these deficiencies, the Vehicle-in-Virtual-Environment (VVE) method was proposed as a safer, more efficient, and cost-effective solution for developing and testing connected and autonomous driving technologies by operating the real vehicle and multiple other actors like vulnerable road users in different test areas while being immersed within the same highly realistic virtual environment. This VVE approach synchronizes real-world vehicle and vulnerable road user
Chen, HaochongCao, XinchengGuvenc, LeventAksun Guvenc, Bilin
Testing collision avoidance systems on vehicles has become increasingly complex. Robotic platforms called Pedestrian Target Carriers (PTC) typically require Global Positioning System (GPS), network communications, tuning, and ever-increasing scope to the user interface to function. As an alternative to these complicated systems, but as an improvement to a pulley system pedestrian target carrier, a simplistic robotic platform was developed. An open-loop user interface was designed and developed, and a series of tests were performed to evaluate the effectiveness of the robot in performing basic, repeatable straight-line tests with a vehicle in the loop. Based on testing outcomes, the development of further control algorithms, user requirements, and the prototype improvements are analyzed for future work.
Bartholomew, MeredithMuthaiah, PonaravindHeydinger, GaryZagorski, Scott
As longitudinal Automated Driving System (ADS) technologies, such as Adaptive Cruise Control (ACC), become more prevalent, robust testing frameworks that encompass both simulation and vehicle-in-the-loop (VIL) methodologies are essential to ensure system reliability, safety, and performance refinement. Although significant research has focused on ACC algorithm development and simulation testing, existing VIL dynamometer testing frameworks are typically tailored to specific vehicle models and sensor simulation tools. These highly customized approaches often fail to account for broader interoperability while overlooking energy consumption as a key performance metric. This paper presents a novel modular framework for ACC dynamometer testing, designed to enhance interoperability across a diverse range of vehicle platforms, simulation tools, and dynamometer facilities with a focus on evaluating impacts of automated longitudinal control on the overall energy consumption of the vehicle. The
Goberville, NicholasHamilton, KaylaDi Russo, MiriamJeong, JongryeolDas, DebashisOrd, DavidMisra, PriyashrabaCrain, Trevor
Recent years have seen a strong move towards Software Defined Vehicles (SDV) concept as it is seen as an enabler for advancing the mobility by integrating complex technologies like Artificial Intelligence (AI) and Connected Autonomous Driving (CAD) into the vehicle. However, this comes with fundamental changes to the vehicle’s Electrical/Electronic (EE) architecture which require novel testing approaches. This paper presents FEV’s SDV Hardware-In- The-Loop (HIL) test setup which focuses on testing the developed HPC-based software. The functionality of the SDV HIL test setup is demonstrated by testing the software of multiple technologies within the High Performance Computer (HPC) environment like ADAS and teleoperation virtual control units with Over-the-air (OTA) up- dates capability. Test results show the effectiveness of utilizing FEV’s HIL setup in developing and validating the software of SDV platforms.
Obando, DavidAlzu'bi, HamzehCarreón Vásquez, ErwinAlrousan, QusayAlnajdawi, Mohammad SamiTasky, Thomas
To further optimize the automatic emergency braking for pedestrian (AEB-P) control algorithm, this study proposes an AEB-P hierarchical control strategy considering road adhesion coefficient. First, the extended Kalman filter is used to estimate the road adhesion coefficient, and the recursive least square method is used to predict the pedestrian trajectory. Then, a safety distance model considering the influence factor of road adhesion coefficient is proposed to adapt to different road conditions. Finally, the desired deceleration is converted into the desired pressure and desired current to the requirements of the electric power-assisted braking system. The strategy is verified through the hardware-in-the-loop (HIL) platform; the simulation results show that the control algorithm proposed in this article can effectively avoid collision in typical scenarios, the safe distance of parking is between 0.61 m and 2.34 m, and the stop speed is in the range of 1.85 km/h–27.64 km/h.
Wang, ZijunWang, LiangMa, LiangSun, YongLi, ChenghaoYang, Xinglong
Path-tracking control occupies a critical role within autonomous driving systems, directly reflecting vehicle motion and impacting both safety and user experience. However, the ever-changing vehicle states, road conditions, and delay characteristics of control systems present new challenges to the path tracking of autonomous vehicles, thereby limiting further enhancements in performance. This article introduces a path-tracking controller, time-varying gain-scheduled path-tracking controller with delay compensation (TGDC), which utilizes a linear parameter-varying system and optimal control theory to account for time-varying vehicle states, road conditions, and steering control system delays. Subsequently, a polytopic-based path-tracking model is applied to design the control law, reducing the computational complexity of TGDC. To evaluate the effectiveness and real-time capability of TGDC, it was tested under a series of complex conditions using a hardware-in-the-loop platform. The
Hu, XuePengZhang, YuHu, YuxuanWang, ZhenfengQin, Yechen
To tackle the challenge of accurately predicting collision times for autonomous vehicles navigating complex dynamic obstacles, this paper proposes an innovative Angle-Weighted Time-to-Collision (AW-TTC) algorithm. Traditional TTC algorithms are known for their computational simplicity and strong real-time performance, making them widely applicable across various driving scenarios. However, they often struggle with predictive accuracy when encountering obstacles moving at angles, which can delay vehicle response and compromise overall safety. To address this limitation, this study introduces a modification to the traditional TTC algorithm by incorporating an angle-based weighting factor, improving collision time prediction accuracy. A Hardware-in-the-Loop (HIL) experimental setup was developed, utilizing a Vehicle Control Unit (VCU) and the SCANeR simulation platform to simulate dynamic obstacles in complex traffic scenarios. The AW-TTC algorithm’s performance was then evaluated
Zhu, ShaopengTang, YuanningLi, BingWang, XiaoliangChen, Huipeng
The development of the electrification technology of unmanned aerial vehicle (UAV) puts forward higher requirements for the control performance and verification methods of permanent magnet synchronous motor (PMSM). In this paper, a fuzzy PI control strategy based on a particle swarm optimization (PSO) algorithm is proposed to optimize the parameters of the PI controller and improve the dynamic response and control accuracy of PMSM. Firstly, Matlab/Simulink is used to build an online vector control model of PMSM, and the PSO algorithm is used to optimize the controller parameters online to adapt to the dynamic characteristics of the motor under different working conditions. Secondly, a current reconstruction scheme is designed, which reshapes the current waveform by sampling at the center point of the pulse width modulation (PWM) signal to make it closer to the ideal sine wave, so as to improve the motor operation efficiency. Finally, Speedgoat is used to build a HiL hardware in-loop
Du, WentaoZhu, JingyuWang, ZhenyuWang, ChaoGeng, HemingLiu, Kun
PEM electrolysis system has characteristic of excellent performance such as fast response, high electrolysis efficiency, compact design and wide adjustable power range. It provides a sustainable solution for the production of hydrogen, and is well suited to couple with renewable energy sources. In the development process of PEM electrolysis controller, this article originally applied the V-mode development process, including simulation modeling, RCP testing, and HIL testing, which can provide guidance in the practical application of electrolytic hydrogen production. In this paper, we present modeling and simulation study of PEM water electrolysis system. Model of electrolytic cell, hydrogen production subsystem and thermal management subsystem are constructed in Matlab/Simulink. Controller model was designed based on PI control strategy. A rapid prototyping controller with MPC5744 chip was used to develop the control system of electrolytic hydrogen production system. Hardware in the
Hua, YuweiJin, ZhenhuaTian, YingTao, Yuepeng
Due to manufacturing, assembly, and actuator wear, slight deviations between the actual and logical positions of various gears in a transmission system may accumulate, affecting shift quality, reducing shift accuracy, and causing operational anomalies. To address this issue, a self-learning method based on the top dead center (TDC) and lower dead center (LDC) was proposed, specifically for the hybrid gearbox of an electric torque converter (eTC) module and a double-input shaft gearbox (DIG). The linear active disturbance rejection control (LADRC) method was employed to estimate and manage the nonlinear resistance during the motion of the shifting motor. To simplify the controller parameter problem, the nutcracker optimization algorithm (NOA) was utilized to tune the LADRC parameters, thereby optimizing the position self-learning process. The control strategy was modeled using MATLAB/SIMULINK, and its reasonableness was verified through hardware-in-the-loop (HIL) tests. Based on these
Hong, HanchiQuan, Kangningd’Apolito, LuigiXu, Li
With the technology of electronic chassis control systems of automobile is widely used, the functional interaction between brake system and the other electronic systems may lead to brake boost degradation. Therefore, it is necessary to find out brake boost degradation events in the quite large number of driving scenarios. To solve the difficulty of thoroughly and quickly searching for brake boost degradation conditions in the large number of driving scenarios, based on Mechatronic-Hardware-In-the-Loop (M-HIL) technology, this paper constructs an electrical chassis system M-HIL bench to verify the function and performance of the electronic brake control system under actual chassis system conditions. To search and locate the brake boost degradation conditions rapidly and enhance the searching efficiency of levels boundary of affecting factors for brake boost degradation, firstly, based on pair-wise coverage combinatorial testing, brake boost degradation occurrence rate is estimated and
Guo, XiaotongLi, LunChen, ZhichengZhang, LiliangYan, LupingWang, WeiZh, Bing
SBW(Steer-by-wire) is a steering system that transmits the driver’s request and gives feedback to the driver through electrical signals. This system eliminates the mechanical connection of the traditional steering system, and can realize the decoupling of the steering wheel and the road wheel. In addition, this system has a perfect torque feedback system, which can accurately and delicately feedback the road surface information to the driver. However, vehicle driving deviation is one of the most common failure modes affecting vehicle performance in the automotive aftermarket, this failure mode can exacerbates tire wear, reducing their life cycle, at the same time, the driver must apply a counter torque to the steering wheel for a long time to maintain straight-line travel during driving. This increases the driver’s operational burden and poses safety hazards to the vehicle’s operation. Based on the steer-by-wire system and vehicle driving deviation characteristics, this paper proposes
Xiangfei, XuQu, Yuan
The automotive industry relies heavily on software to enhance safety, performance, and user experience. The increasing complexity of automotive software demands rigorous testing methodologies. Ensuring the quality and reliability of this software is critical. In this paper, an innovative approach to software validation and verification using a Hybrid Hardware-In-the-Loop (HIL) test system has been proposed. This methodology integrates diverse hardware and software tools to establish a flexible and efficient testing environment. HIL environment can evaluate Device Under Test (DUT) with minimal alterations. This comprehensive solution includes the development of test strategies, plant model simulation, and compliance assurance, all in accordance with automotive standards such as ASPICE, ISO26262. Introduction of a Personality module for Automotive ECU (DUT), enables testing of multiple products using the same HIL setup. This is achieved by loading a DUT-specific signal mapping
Yadav, VikaskumarBhade, Nilesh
In Automotive world, vehicle development includes design and testing of hardware and software. Hardware includes components required for actuation and sensing, along with the controller hardware. Software includes control logic embedded in controller for functioning of these components. Generally, software inside controller could be validated in various ways e.g., Software in Loop (SiL), Hardware in Loop (HiL), Vehicle testing. During initial phase of control software development cycle, plant models with adequate accuracy replicating hardware components are utilized for digital software validation. Many a times, hardware components might be available before control software matures. Hence, to validate plant models for their accuracy & quality alternate option of actual controller is needed during initial phase. Intelligent controller mimicking original controller can be an alternate option for plant model improvement and component level performance analysis. This paper proposes a
Chhagar, Rohnit SinghNavse, SiddharthKumar, Lavanya
In the rapidly evolving field of automotive engineering, the drive for innovation is relentless. One critical component of modern vehicles is the automotive ECU. Ensuring the reliability and performance of ECU is paramount, and this has led to the integration of advanced testing methodologies such as Hardware-in-the-Loop (HIL) testing. In conjunction with HIL, the adoption of Continuous Integration (CI) and Continuous Testing (CT) processes has revolutionized how automotive ECU are developed and validated. This paper explores the integration of CI and CT in HIL testing for automotive ECU, highlighting the benefits, challenges, and best practices. Continuous Integration and Continuous Test (CI/CT) are essential practices in software development. Continuous Integration process involves regularly integrating code changes into the main branch, ensuring that it does not interfere with the work of other developers. The CI/CT server automatically build and test code whenever a new commit is
Hande, Sheetal VikramMandava, Balaji Bharath
In non-cooperative environments, unmanned aerial vehicles (UAVs) have to land without artificial markers, which is a key step towards achieving full autonomy. However, the existing vision-based schemes have the common problems of poor robustness and generalization, and the LiDAR-based schemes have the disadvantages of low resolution, high power consumption and high weight. In this paper, we propose an UAV landing system equipped with a binocular camera to preform 3D reconstruction and select the safe landing zone. The whole system only consists of a stereo camera, and the innovation of the solution is fusing the stereo matching algorithm and monocular depth estimation(MDE) model to get a robust prediction on the metric depth. The whole landing system consists of a stereo matching module, a monocular depth estimation (MDE) module, a depth fusion module, and a safe landing zone selection module. The stereo matching module uses Semi-Global Matching (SGM) algorithm to calculate the
Zhou, YiBiaoZhang, BiHui
To address the issues of functional conflicts in execution subsystems and the deterioration of control performance due to model parameter uncertainties in the motion control of distributed vehicle by wire, this article proposes an integrated control strategy considering parameter robustness. This strategy aims to compensate for model mismatch, resolve functional conflicts, and achieve motion coordination. Based on the over-actuation characteristics of distributed vehicle by wire, this article constructs the dynamic model and utilizes the tire cornering properties along with phase portraits to delineate the working regions of the execution subsystems. To deal with model parameter uncertainties and mismatch, tube-based model predictive control (tube-based MPC) is applied to the control strategy design, which compensates for model deviations through state feedback and constructs a robust positively invariant set (RPI) to constrain the system state. Correspondingly, the weights of control
Chen, GuoyingBi, ChenxiaoZhao, XuanmingYang, LiunanTang, ZhuoYu, Huili
Sustainable mobility is a pressing challenge for modern society. Electrification of transportation is a key step towards decarbonization, and hydrogen Fuel Cell Hybrid Electric Vehicles (FCHEVs) offer a promising alternative to Battery Electric Vehicles (BEVs), especially for long-range applications: they combine a battery system with a fuel cell, which provides onboard electric power through the conversion of hydrogen. Paramount importance is then given to the design and sizing of the hybrid powertrain for achieving a compromise between high performance, efficiency, and low cost. This work presents a Hardware-in-the-Loop (HIL) platform developed for designing and testing the powertrain layout of an FCHEV. The platform comprises two systems: a simulation model reproducing the dynamics of a microcar and a hardware system for the fuel cell hybrid electric powertrain. The former simulates the vehicle's behavior, while the latter is composed of a 2kW real fuel cell stack and a 100Ah Li-ion
Bartolucci, LorenzoCennamo, EdoardoCordiner, StefanoDonnini, MarcoGrattarola, FedericoMulone, Vincenzo
Accurate estimation of vehicle energy consumption plays an important role in developing advanced energy-saving connected automated vehicle technologies such as Eco Approach and Departure, PHEV mode blending, and Eco-route planning. The present study developed a reduced-order energy model with second-order response surfaces and torque estimation to estimate the energy consumption while just relying on the drive cycle information. The model is developed for fully electric Chevrolet Bolt using chassis dynamometer data. The dyno test data encompasses the various EPA test cycles, real-world, and aggressive maneuvers to capture most powertrain operating conditions. The developed model predicts energy consumption using vehicle speed and road-grade inputs for a drive cycle. The accuracy of the model is validated by comparing the prediction results against track and road test data. The developed model was able to accurately predict the energy consumption for track drive cycles within the error
Goyal, VasuDudekula, Ahammad BashaStutenberg, KevinRobinette, DarrellOvist, GrantNaber, Jeffery
Test cycle simulation is an essential part of the vehicle-in-the-loop test, and the deep reinforcement learning algorithm model is able to accurately control the drastic change of speed during the simulated vehicle driving process. In order to conduct a simulated cycle test of the vehicle, a vehicle model including driver, battery, motor, transmission system, and vehicle dynamics is established in MATLAB/Simulink. Additionally, a bench load simulation system based on the speed-tracking algorithm of the forward model is established. Taking the driver model action as input and the vehicle gas/brake pedal opening as the action space, the deep deterministic policy gradient (DDPG) algorithm is used to update the entire model. This process yields the dynamic response of the output end of the bench model, ultimately producing the optimal intelligent driver model to simulate the vehicle’s completion of the World Light Vehicle Test Cycle (WLTC) on the bench. The results indicate that the
Gong, XiaohaoLi, XuHu, XiongLi, Wenli
The calibration of Engine Control Units (ECUs) for road vehicles is challenged by stringent legal and environmental regulations, coupled with short development cycles. The growing number of vehicle variants, although sharing similar engines and control algorithms, requires different calibrations. Additionally, modern engines feature increasingly number of adjustment variables, along with complex parallel and nested conditions within the software, demanding a significant amount of measurement data during development. The current state-of-the-art (White Box) model-based ECU calibration proves effective but involves considerable effort for model construction and validation. This is often hindered by limited function documentation, available measurements, and hardware representation capabilities. This article introduces a model-based calibration approach using Neural Networks (Black Box) for two distinct ECU functional structures with minimal software documentation. The ECU is operated on
Meli, MatteoWang, ZezhouBailly, PeterPischinger, Stefan
The modern automotive industry is facing challenges of ever-increasing complexity in the electrified powertrain era. On-board diagnostic (OBD) systems must be thoroughly calibrated and validated through many iterations to function effectively and meet the regulation standards. Their development and design process are more complex when prototype hardware is not available and therefore virtual testing is a prominent solution, including Model-in-the-loop (MIL), Software-in-the-loop (SIL) and Hardware-in-the-loop (HIL) simulations. Virtual prototype testing relying on real-time simulation models is necessary to design and test new era’s OBD systems quickly and in scale. The new fuel cell powertrain involves new and previously unexplored fail modes. To make the system robust, simulations are required to be carried out to identify different fails. Thus, it is imminent to build simulation models which can reliably reproduce failures of components like the compressor, recirculation pump
Pandit, Harshad RajendraDimitrakopoulos, PantelisShenoy, ManishAltenhofen, Christian
Vehicles equipped with articulated steering systems have advantages such as low energy consumption, simple structure, and excellent maneuverability. However, due to the specific characteristics of the system, these vehicles often face challenges in terms of lateral stability. Addressing this issue, this paper leverages the precise and independently controllable wheel torques of a hub motor-driven vehicle. First, an equivalent double-slider model is selected as the dynamic control model, and the control object is rationalized. Subsequently, based on the model predictive control method and considering control accuracy and robustness, a weight-variable adaptive model predictive control approach is proposed. This method addresses the optimization challenges of multiple systems, constraints, and objectives, achieving adaptive control of stability, maneuverability, tire slip ratio, and articulation angle along with individual wheel torques during the entire steering process of the vehicle
Huang, BinMa, MinruiMa, LiutaoCui, KangyuWei, Xiaoxu
Electro-Mechanical Braking (EMB) system, which completely abandons the traditional hydraulic device, realizes complete human-vehicle decoupling and integrates various functions without adding additional accessories, could meet the requirements of the future intelligent driving technology for high-quality braking control. However, there are significant internal interference of nonlinear characteristics such as mechanical friction and system variable stiffness during the actual working process of EMB, and these make the accuracy and rate of the clamping force control decline. This paper proposes a precise clamping force control strategy for EMB based on nonlinear characteristics compensation. First, we systematically analyze the working principle of EMB, and establish the mathematical model of EMB system including motor, transmission mechanism and friction. At the same time, some typical experiments are designed to identify internal parameters of friction model. Next, in order to
Jin, XinWu, JianZhang, YufanZhao, HuiChaoZhao, YongqiangYu, ZhenChen, Zhicheng
Hardware-in-the-loop (HIL) testing is part of automotive V-design which is commonly used in automotive industries for the development of Electronic Control Unit (ECU). HIL test platform provides the capacity to test the ECU in a controlled environment even with scenarios that would be too dangerous or impractical to test on real situation, also the ECU can be tested even before the actual plant under building. This paper presents a HIL test platform for the validation of a seat ECU. The HIL platform can also be used for control and diagnostics algorithm development. The HIL test platform consists of three parts: a real time target machine (dSPACE SCALEXIO AutoBox), an ECU (Magna Seating M12 Module), and a signal conditioning unit (Load Box). The ECU produces the control commands to the real-time target machine through load box. The real time target machine hosts the plant model of the power seat which includes the kinematics and dynamics of the seat movements. The virtual model within
Wang, ShuoLink, BravinRosiewicz, BrandonYang, Hanlong
Multiple actuators equipped in electric vehicles, such as four- wheel steering (4WS) and four-wheel drive (4WD), provide more degrees of freedom for chassis motion control. However, developing independent control strategies for distinct actuator types could result in control conflicts, potentially degrading the vehicle's motion performance. To address this issue, a model predictive control (MPC) based steering-drive cooperated control strategy for enhanced agility and stability of electric vehicles with 4WD and 4WS is proposed in this paper. By designing the control constraints within the MPC framework, the strategy enables single-drive control, single-steering control, and steering-drive cooperative control. In the upper control layer, a linear time-varying MPC (LTV-MPC) is designed to generate optimal additional yaw moment and additional steering angles of front and rear wheels to enhance vehicle agility and lateral stability. In the lower control layer, a linear MPC (LMPC) based
Sun, HaoboZhang, LinZhao, ChunlaiWang, NianZhang, ZeyangChen, Hong
The suspension system plays a crucial role in mitigating vehicle vibration, enhancing passenger comfort, and improving driving handling stability. While many mechanical experimental platforms exist for testing suspension system performance, they often need high costs and precision requirements. In the field of modern industrial product design, hardware-in-the-loop (HIL) simulation has become an invaluable tool. Electrically interconnected suspension (EIS) is a novel type of interconnected suspension by connecting various suspensions in an electrical way. The novel EIS avoids many drawbacks of traditional interconnected suspensions. The EIS is usually composed of electromagnetic motors and electrical networks (EN). By designing the structure of the EN reasonably, the EIS system can achieve decoupling control in multiple vibration modes. This paper introduces an HIL experimental platform established for a half-car EIS system based on an NI Compact RIO 9049. The half-car electrically
Xia, XiangjunLiu, PengfeiLi, WeihuaDu, HaipingNing, Donghong
This paper introduces reduced-order modeling techniques with Artificial Intelligence (AI) for Model-Based Development (MBD). In vehicle development, detailed physical models are replaced by reduced-order models (ROM) to expedite simulations. With recent advancements in AI-based reduced-order modeling, it is expected that modeling work will become more efficient, leading to reduced simulation times. However, the range of simulations (Model-in-the-Loop Simulation - MILS, Hardware-in-the-Loop Simulation - HILS, bench-system) compatible with ROM is limited. To overcome this limitation, this study leverages the ONNX format (Open Neural Network Exchange), a universally supported format among machine learning frameworks, and the Functional Mock-up Interface (FMI), a standard interface format for simulation tools, to enable general-purpose embedded technology with ROM. This study employs a vehicle model in engine surge simulations to validate AI-based reduced-order modeling for MBD. In MILS
Inagaki, TakahiroNasu, TadaakiTakeshige, MinoruIwata, MotofumiNakane, Naoto
The steer-by-wire (SBW) system, an integral component of the drive-by-wire chassis responsible for controlling the lateral motion of a vehicle, plays a pivotal role in enhancing vehicle safety. However, it poses a unique challenge concerning steering wheel return control, primarily due to its fundamental characteristic of severing the mechanical connection between the steering wheel and the turning wheel. This disconnect results in the inability to directly transmit the self-aligning torque to the steering wheel, giving rise to complications in ensuring a seamless return process. In order to realize precise control of steering wheel return, solving the problem of insufficient low-speed return and high-speed return overshoot of the steering wheel of the SBW system, this paper proposes a steering wheel active return control strategy for SBW system based on the backstepping control method. First, the dynamics model of the SBW system is established, thereby laying the foundation for
Chen, ChaoningKaku, ChuyoZheng, Hongyu
Validation plays a crucial role in any Electronic Development process. This is true in the development of any automotive Electronic Control Unit (ECU) that utilizes the Automotive V process. From Research and Development (R&D) to End of Line (EOL), every automotive module goes through a plethora of Hardware (HW) and Software (SW) testing. This testing is tedious, time consuming, and inefficient. The purpose of this paper is to show a way to streamline validation in any part of the automotive V process using Python as a driving force to automate and control Hardware-in-the-loop (HIL) / Model-in-the-loop (MIL) / Software-in-the-loop (SIL) validation. The paper will propose and outline a framework to control test equipment, such as power supplies and oscilloscopes, load boxes, and external HW. The framework includes the ability to control CAN communication signals and messages. A visual Graphical User Interface (GUI) has also been created to provide simplified operation to the user
Rosiewicz, BrandonLink, Bravin
Simulators are essential part of the development process of vehicles and their advanced functionalities. The combination of virtual simulator and Hardware-in-the-loop technology accelerates the integration and functional validation of ECUs and mechanical components. The aim of this research is to investigate the benefits that can arise from the coupling of a steering Hardware-in-the-loop simulator and an advanced multi-contact tire model, as opposed to the conventional single-contact tire model. On-track tests were executed to collect data necessary for tire modelling using an experimental vehicle equipped with wheel force transducer, to measure force and moments acting on tire contact patch. The steering wheel was instrumented with a torque sensor, while tie-rod axial forces were quantified using loadcells. The same test set has been replicated using the Hardware-in-the-loop simulator using both the single-contact and multi-contact tire model. The simulation apparatus is composed of a
Veneroso, LucaCapitani, RenzoAlfatti, FedericoAnnicchiarico, ClaudioFarroni, FlavioSakhnevych, Aleksandr
The EPB (Electric Parking Brake) system is divided into two parts based on VDA305-100 recommendation (German Association of the Automotive Industry, VDA). One part of the EPB system contains the parking brake actuator, caliper, and actuation logic (parking brake controller, PBC). The second part of the EPB system is called to the HOST which contains the EPB power electronics, necessary peripherals and controls the functions that the driver can experience. According to VDA305-100, the PBC is responsible for recognition of a fault in the parking brake actuator based on the measured values transmitted from the HOST such as EPB motor voltage and current. Due to mechanical fault injection limitations, failsafe tests require physically electrical emulation caused by parking brake actuator faults to verify the parking brake actuator fault detection and management algorithm. This paper introduces EPB motor load emulation techniques in which EPB HILS (Hardware in the Loop Simulation) test
Son, ChanghyunYu, Hyunuk
An ECU is at the heart of control of any modern IC engines which has several functions to be monitored and controlled. Among the controlled parameters are fuel supply and ignition which are dependent on few real time measured parameters such as crankshaft position, mass air flow. The output of the ECU performs an action on the engine by controlling amount of power to actuators precisely. ECU are designed to stand the adverse conditions of operation to which a vehicle is typically exposed to, but in few cases, ECU fail due to faulty wiring and over voltage. The prime solution used is to replace the faulty ECU by new one. But this solution has limitations that the replacement costs are high. As an alternative for repairing ECUs, our project focuses on creating an ECU bench test tool for real time ECU testing and validate the working of ECU. A Technician is need of an ECU bench simulation tool that can generate signals similar to CKP, TPS, O2, MAP, IAT and CLT sensors. This also can be
Nandakumar, M.B.Magesh, B.Muthiya, Solomon JenorisPrashanth, K.P.Mahesh, B.R.Naveena, B.E.Raja, SelvakumarGodwin, John J.
In today’s scenario, the software validation phase in the automotive software development cycle uses different testing environments/platforms (Verification uses Model in Loop (MiL), function validation uses Software in Loop (SiL), HW and system level tests uses Hardware in Loop (HiL), and system testing uses vehicle). Each of these platforms are highly expensive to deploy and maintain and poses significant constraints in directly comparing the test results across platforms due to the difference in test reporting structures. It is also noticed that there is high redundancy or overlapping of test cases and timely availability of these platforms for timely SW release testing. The solution helps in integrating MiL, SiL, and HiL test platforms into one single "Integrated Testing Platform," which eventually saves testing time, effort, and cost, along with early bug detection during the software development phase. With the reuse of relevant compatible test cases in each of the test phases
Jain, NayankN T, SavithaG, SudipBhogenahally Lakshminarayana, AnuroopaManish, Kumar
The evolution of automotive Electronic Control Unit (ECU) technology brings the additional safety, comfort, and control to the vehicle. With an exponential increase in the complexity involved in modern-day ECU, it is very important to verify and validate robustness, functionality, and reliability of ECU software [1]. As of now, Hardware in loop [HIL] and Vehicle in Loop validations are well known software functional validation methods. However, these methods require physical setup, which can incur more cost and time during the development phase. In recent years, ECU virtualization gained attention for development and validation of automotive ECUs [2]. The goal is to minimize the effort on software testing. This paper focuses on virtualization of Electric Vehicle (EV) powertrain system using SIL approach. The objective is to provide an adaptable EV-virtualization environment for virtual-ECU (vECU) verification and validation. This paper focuses on standardization of SIL simulation setup
Sajnani, AbhishekVernekar, KiranGosavi, RupeshNaik, Venkatesh
Autonomous Emergency Braking (AEB) systems play a critical role in ensuring vehicle safety by detecting potential rear-end collisions and automatically applying brakes to mitigate or prevent accidents. This paper focuses on establishing a framework for the Verification & Validation (V&V) of Advanced Driver Assistance Systems (ADAS) by testing & verifying the functionality of a RADAR-based AEB ECU. A comprehensive V&V approach was adopted, incorporating both virtual and physical testing. For virtual testing, closed-loop Hardware-in-Loop (HIL) simulation technique was employed. The AEB ECU was interfaced with the real-time hardware via CAN. Data for the relevant target such as the target position, velocity etc. was calculated using an ideal RADAR sensor model running on the real-time hardware. The methodology involved conducting a series of test scenarios, including various driving speeds, obstacle types, and braking distances. Automation was leveraged to perform automated testing and
Bhagat, AjinkyaKale, Jyoti GaneshPachhapurkar, NinadKarle, ManishR, ManishKarle, Ujjwala
System engineering-based approach is now ubiquitous in the automotive industry. It is a disciplined approach that ensures that targets are clearly defined and met through a structured and holistic approach. In this paper, we report an application of a systems engineering-based methodology for developing seating system features. It starts with a Business Requirement Document (BRD), which enlists the business requirements of a feature. We then developed a Logical Architecture Diagram (LAD) on a Simulink environment, which is an initial proposal for designing the logic to realize the desired functionality. As a next step, we perform Functional Failure Analysis (FFA) on the LAD to identify potential failure modes. We propose a few ways to mitigate the identified failures or modify the design so that these failures are rendered inconsequential to the end user. Based on the updated LAD, a System Requirement Document (SRD) is created, which contains all the requirements corresponding to the
Ghosh, SoumikVidhu, Nandagopal
Automotives are provided with a lot of intelligence that monitors, controls, actuates, and diagnose the various aspects of vehicle functionalities. One of the critical parameters required to monitor is Vehicle fuel level. Fuel level in the vehicle is a key input for engine performance, drivability, and fuel level indication in Instrumentation cluster for customer. Most economic and reliable fuel level sensor is resistive sensor with float. The purpose of this paper is to address the wrong fuel level indication in Vehicle level. Wrong fuel level indication may be due to malfunction of Instrumentation cluster signal input or Fuel level sensor function. To verify this, Instrumentation cluster is tested with HIL system instead of real time Fuel level sensor. By configuring the HIL module to analogue resistance channel, cluster is tested for fuel level bar indication. Fuel level sensor is tested by Vehicle level fuel calibration and exact issue is simulated. The failed fuel level sensor is
K, VishaliPatil, Pratik
The advent of BS6 coupled with RDE emission norms has increased the development efforts and costs due to the shear amount of testing and validation on real engines and vehicles which are necessitated by these stringent norms. Front-loading of tasks by moving actual vehicle and engine tasks on to virtual setup, will reduce the development efforts and costs significantly. This front-loading of tasks on to a LABCAR would need real time and highly accurate plant models, tools to parameterize these plant models and accurate data driven models to predict dynamic parameters like emissions. In this collaborative work between Maruti Suzuki India Ltd and ETAS India, ETAS VVTB and ICE plant models were parameterized with the data generated on engine test with ASCMO Global DoE test plan by using ASCMO MOCA. The ASCMO Global test plan also ensures the coverage of data points across the entire engine operating space. These plants models were optimized to an accuracy level of more than 95%. The
Samaddar, SoumikVarsha, AnuroopaGarg, CharuGalgali, AbhishekP R, Renjith
For distributed drive electric vehicles (DDEV) equipped with an electronic hydraulic braking system (EHB) and four-wheel hub motors, when one or more hub motors have regenerative braking failure, because the braking torque of the four wheels is inconsistent, additional yaw moment will be formed on the vehicle, resulting in the loss of directional stability of the vehicle during braking. If it occurs at high speeds, it will further threaten driving safety. To solve the above problems, a new hierarchical control architecture is established in this paper. Firstly, taking DDEV as the research object, the vehicle dynamics model and EHB braking system model are built. Then, a state observer based on an adaptive Kalman filter is designed in the upper layer to estimate the vehicle’s sideslip angle and yaw rate in real time. In the judgment decision-making layer, the phase plane is used to divide the stability domain boundary of the vehicle, and the quasi-stability tolerance band judges the
Fang, TingZhao, LinfengHu, JinfangMei, ZhenWang, MuyunSun, Bin
The following paper aims to bring the topics of connected testing and emission measurements together. It is an introduction of connected bench testing with the aim to characterize brake particle emissions with a special focus on the impact of regenerative braking by simulating the real behavior of a premium BEV SUV. Such an approach combines the advantages of a brake dynamometer including an emission testing setup and a HiL setup to allow a much more precise testing of brake particle emissions under the impact of regen braking compared to the current recommendations of the Global Technical Regulation (GTR) on brake particle emissions. It is shown for the very first time, how interactions between the vehicle motion system work. The study includes one physical front brake corner as well as one physical rear brake corner. The regen functionalities are simulated by a real ESC-ECU which is the core of the HiL test setup. The presented results will deal with the simulation accuracy, the
Gramstat, SebastianGramstat, ElizavetaHense, MaximilianZessinger, Marco
This paper uses the brake control allocation method for Electric Vehicles (EVs) based on system-level vehicle Reference Point (RP) motion feedback. The RP motion control is an alternative to the standard brake torque allocation methods and results in improved vehicle stability in both longitudinal and lateral directions without requiring additional measurements beyond what is available in EVs with ABS and ESP. The proposed control law simplifies the brake torque allocation algorithm, reduces overall development time and effort, and merges most of the braking systems into one. Additionally, the measured or estimated signals required are reduced compared to the standard approach. The system-level RP measurements and references are transformed into individual wheel coordinate systems, where tracking is ensured by actuating both friction torques and electric motor regenerative torques using a proposed brake torque blending mechanism. The whole control system is validated in simulations
Vošahlík, DavidVeselý, TomášHanis, TomasPekar, Jaroslav
In battery electric vehicles (BEV), thermal management is a key technique to improve efficiency and lifetime. Currently, manufacturers use different cooling concepts with numerous architectures. This work describes the development of a co-simulation framework to optimize BEV thermal management on system level, using advanced simulation methodologies also on component level, merging simulation and testing. Due to interactions between multiple conditioning circuits, thermal management optimization requires an overall vehicle approach. Thus, a full vehicle co-simulation of a BEV is developed, combining 1D thermal management software KULI and MATLAB/Simulink. Within co-simulation, the precise modeling of vehicle’s subsystems is important to predict thermal behavior and to calculate dynamic heating and cooling demands as well as exchanged energy flows with the thermal management system. Here, different methodologies are applied for cabin and battery modeling and simulation, with this paper
Frühwirth, ChristianLorbeck, RolandSchutting, EberhardEichlseder, Helmut
Hybrid electric aircraft propulsion is an emerging technology that presents a variety of potential benefits along with technical integration challenges. Developing these new propulsion architectures with their complex control systems, and ultimately proving their benefit, is a multistep process. This process includes concept development and analysis, dynamic simulation, hardware-in-the-loop testing, full-scale testing, and so on. This effort is being revolutionized and indeed enabled by new digital tools that support increasing the technology readiness level throughout the maturation process. As part of this Digital Transformation, NASA has developed a suite of publicly available digital tools that facilitate the path from concept to implementation. This paper describes the NASA-developed tools and puts them in the context of control system development for hybrid electric aircraft propulsion. The three MATLAB®-based software packages are the Toolbox for the Modeling and Analysis of
Litt, Jonathan S.
Electrification is a very current topic for all the mobile machinery whose primary source of power is an internal combustion engine; among those the light weight passenger vehicles represent the first field of application of this trend and also the state of the art of the technology. Agriculture is a huge fuel consumer sector and for this reason the tractor industry is now working on electrification, proposing different approaches for different power sizes: the “Battery Electric Vehicle” topology is proposed for small and mid-power size tractors, while for the big ones various hybrid architectures couple the internal combustion engine to electric units. In this paper a reference tractor is considered, endowed with an input coupled hydro-mechanical Continuously Variable Transmission and an alternative compound architecture is proposed, which provides the same performances and it is more suitable for electrification. The latter is modelled in Simcenter Amesim through a lumped parameter
Chiarabelli, DamianoMarani, PietroSchaltz, ErikLu, KaiyuanMartelli, MassimoGessi, SilviaMucchi, Emiliano
Battery electric vehicle (BEV) adoption and complex powertrains pose new challenges to automotive industries, requiring comprehensive testing and validation strategies for reliability and safety. Hardware-in-the-loop (HIL) based real-time simulation is important, with cooperative simulation (co-simulation) being an effective way to verify system functionality across domains. Fault injection testing (FIT) is crucial for standards like ISO 26262. This study proposes a HIL-based real-time co-simulation environment that enables fault injection tests in BEVs to allow evaluation of their effects on the safety of the vehicle. A Typhoon HIL system is used in combination with the IPG CarMaker environment. A four-wheel drive BEV model is built, considering high-fidelity electrical models of the powertrain components (inverter, electric machine, traction battery) and the battery management system (BMS). Additionally, it enables validation of driving dynamics, routes and environmental influences
Konzept, AnjaReick, BenediktPintaric, IgorOsório, Caio
The current electrification trend involving hybrid and electric vehicles requires accurate tools to evaluate performance and reliability of electric powertrains’ control systems. Thanks to Hardware in the Loop (HiL) technique, verification, validation and virtual calibration of Electronic Control Systems can be performed without physical plants, addressing the need of frontloading, cost and time reduction of new vehicles control systems development. However, HiL applications with power electronics controllers brings several concerns due to the extremely low timestep needed for accurate simulation of electromagnetic phenomena, making FPGA-based simulation the only option. Moreover, thermal aspects of electric motors are very important from the control perspective as complex thermal management control strategies are implemented to improve the efficiency and to prevent overheating that can cause permanent damage to the electrical machine. The aim of this work was to develop tools and
Poletto, PaoloAngiolini, AndreaBoccardo, GiulioGraziano, EduardoVaschetto, SilvioDemelas, Roberto
The requirements for modern drivetrains are increasing across all industries. Even mobile working machines such as agricultural and construction machinery are subject to increasingly higher demands in terms of efficiency and CO2 emissions. To verify these requirements and drive further development, it is necessary for testing processes to comprehensively evaluate the machine and its operational processes. For this purpose, the MOBiL testing approach was developed at the Institute of Mobile Machines. This approach incorporates parallel drivetrains, information flow and the environment of the driving and working task. To implement this approach in a complete vehicle testbench, a framework was developed that enables fully individual driving and working tasks of a mobile working machine to be replicated on a test bench. The basis for this framework is the Robot Operating System (ROS), which runs various nodes. Individual nodes control the different testing subsystem, such as the 4-WD
Herr, StefanBecker, Simon
Items per page:
1 – 50 of 690