Browse Topic: Vehicle integration

Items (399)
In both internal combustion engine (ICE) and electric vehicles, Heating, Ventilation, and Air Conditioning (HVAC) systems have become significant contributors to in-cabin noise. Although significant efforts have been made across the industry to reduce noise from airflow handling systems, especially blower noise. Nowadays, original equipment manufacture’s (OEMs) are increasingly focusing on mitigating noise generated by refrigeration handling systems. Since the integration of refrigeration components is vital for the overall Noise Vibrations and Harshness (NVH) refinement of a vehicle, analysing the impact of each HVAC component during vehicle-level integration is essential. This study focused on optimizing the NVH performance of key refrigeration components, including the AC compressor, thermal expansion valve (TXV), suction pipe, and discharge line. The research began with a theoretical investigation of the primary noise and vibration sources, particularly the compressor and TXV
Titave, Uttam VasantKalsule, ShrikantNaidu, Sudhakara
Thermal Management System (TMS) for Battery Electric Vehicles (BEV) incorporates maintaining optimum temperature for cabin, battery and e-powertrain subsystems under different charging and discharging conditions at various ambient temperatures. Current methods of thermal management are inefficient, complex and lead to wastage of energy and battery capacity loss due to inability of energy transfer between subsystems. In this paper, the energy consumption of an electric vehicle's thermal management system is reduced by a novel approach for integration of various subsystems. Integrated Thermal Management System (ITMS) integrates air conditioning system, battery thermal management and e-powertrain system. Characteristics of existing integration strategies are studied, compared, and classified based on their energy efficiency for different operating conditions. A new integrated system is proposed with a heat pump system for cabin and waste heat recovery from e-powertrain. Various cooling
K, MuthukrishnanS, SaikrishnaMahobia, TanmayVijayaraj, Jayanth Murali
This research is dedicated to exploring the application of large language models in the Beijing Subway scientific research project management platform. It conducts a thorough analysis of many key elements, including the application background, technical support, practical achievements, and future development paths. With the continuous development of the Beijing Subway construction scale, the number and complexity of scientific research projects have been gradually increasing. Traditional management models are getting more and more insufficient in dealing large amounts of data, complicated processes, and precise decision-making requirements. By using natural language processing, machine learning, knowledge graph pedigreestechnological and technical model related technologies, which are very different from the one of the most inventive ones, are presented. The objective of intelligence is to solve this model by automatically analyzing papers with a logical and scientific approach and
Pang, YuqiRen, LaihongLiu, Jing
The light-duty transportation sector is experiencing a worldwide push towards reduced carbon intensity. One pathway that has been developed focuses on replacing internal combustion engine (ICE)-based vehicles with full-electric battery electric vehicles (BEV), which offer local carbon dioxide (CO2)-free mobility. However, batteries offer a limited mobility range and can require long recharging times, leading to a limited range perception among some vehicle operators. A range-extended electric vehicle (REEV) utilizes a small ICE to mitigate the range concerns of BEVs, while also enabling a battery size reduction with its associated improvements in cost, weight, and manufacturing-related CO2 intensity. A previous study by the authors discussed evaluation criteria for range extender engines (REx) and compared additive technology options to enable cost-, efficiency, or power-optimized REEV applications using a modular approach. This study contrasts the dedicated REx with associated modular
Hoth, AlexanderMarion, JoshuaSilvano, PeterPeters, NathanPothuraju Subramanyam, Sai KrishnaBunce, Mike
Ground vehicle software continues to increase in cost and complexity, in part driven by tightly integrated systems and vendor lock-in. One method of reducing costs is reuse and portability, encouraged by the Modular Open Systems Approach and the Future Airborne Capability Environment (FACE) architecture. While FACE provides a Conformance Testing Suite to ensure portability between compliant systems, it does not verify that components correctly implement standard interfaces and desired functionality. This paper presents a layered test methodology designed to ensure that a FACE component correctly implements working communication interfaces, correctly handles the full range of data the component is expected to manage, and correctly performs all of the functionality the component is required to perform. This testing methodology includes unit testing of individual components, integration testing across multiple units, and full hardware in the loop system integration testing, offering a
Lingg, MichaelPaul, HowardSullivan, KyleVanSolkema, William
This paper presents a model-based systems engineering (MBSE) and digital twin approach for a military 6T battery tester. A digital twin architecture (encompassing product, process, and equipment twins) is integrated with AI-driven analytics to enhance battery defect detection, provide predictive diagnostics, and improve testing efficiency. The 6T battery tester’s MBSE design employs comprehensive SysML models to ensure traceability and robust system integration. Initial key contributions include early identification of battery faults via impedance-based sensing and machine learning, real-time state-of-health tracking through a synchronized virtual battery model, and streamlined test automation. Results indicate the proposed MBSE/digital twin solution can detect degradation indicators (e.g. capacity fade, rising internal impedance) earlier than traditional methods, enabling proactive maintenance and improved operational readiness. This approach offers a reliable, efficient testing
Sandoval, Roman
As electric mobility spreads and evolves, non-exhaust Particulate Matter (PM) sources are gaining more attention for total vehicular emissions. A holistic approach for studying the involved phenomena is necessary to identify the parameters that have the greatest impact on this portion of emissions. To achieve this, it is necessary to develop a new platform capable of both creating testing methodologies for future regulations and enabling the parallel development of advanced tyres and brakes that meet these standards, by correlating vehicle dynamics, driving style, tyre and brake characteristics, and the resulting emissions. Here the authors present the Sustainable Integrated System for Total non-Exhaust Reduction (S.I.S.T.E.R.) project, funded by the Italian Centro Nazionale per la Mobilità Sostenibile (MOST), that aims to develop an integrated approach to study tyre/brake-related emissions from the initial stages of compound development to outdoor vehicle tests, allowing actions to be
Genovese, AndreaDe Robbio, RobertaLenzi, EmanueleCaiazza, AntonioLippiello, FeliceCostagliola, Maria AntoniettaMarchitto, LucaSerra, AntonioArimondi, MarcoBardini, Perla
Combustion engines operating on a hydrogen-argon power cycle (H-APC) offer potential for superior thermal efficiency with true zero exhaust emissions. The high specific heat ratio of argon allows extrapolation of the theoretical efficiency of the Otto cycle to almost 90%. However, this potential is significantly constrained by challenges in combustion control, excessive thermal loading, and system integration, particularly regarding argon recovery. This study investigates these trade-offs, within the context of real-world engine-based peaking power plants. An experimentally validated 1D-simulation model of a prototype Wärtsilä 20 DF engine serves as reference for analysis of a retrofit incorporating a closed-loop argon cycle, with dedicated H₂ and O2 injectors, a water condenser and water separator. Engine performance is evaluated at reference operating point of 75% load, considering pre-ignition, peak pressure and exhaust temperature constraints, condenser limitations, and impurity
Ahammed, SajidAhmad, ZeeshanMahmoudzadeh Andwari, AminKakoee, AlirezaHyvonen, JariMikulski, Maciej
Engineering precision is an art of nuance — especially when it comes to selecting the right bearing for medical devices. What begins as a straightforward specification process quickly becomes a complex yet familiar puzzle of competing requirements. Oftentimes, engineers discover that a bearing’s performance extends beyond its basic dimensional specs, involving considerations of material properties, system integration and supply chain dynamics.
This study presents a comprehensive techno-economic assessment (TEA) of an integrated e-methanol production system building upon previously published foundational research utilizing Aspen Plus modeling for e-methanol production from sugar cane and sugar beet biomass. The established integrated system converts biomass into ethanol through fermentation and synthesizes e-methanol using both captured CO2 and syngas derived from biomass residue gasification. This approach maximizes CO2 and biomass utilization, promoting a circular carbon economy. The TEA quantifies capital expenditures (CAPEX), operational expenditures (OPEX), and levelized costs of Methanol (LCOM), providing a detailed economic analysis of the potential for commercializing e-methanol. A sensitivity analysis evaluates the impact of feedstock prices and Technology Readiness Levels (TRL), identifying key leverage points affecting financial viability. The study aims to explore the potential of utilizing existing agricultural
Fernandes, Renston JakeShakeel, Mohammad RaghibNguyen, DucduyIm, Hong G.Turner, James W.G.
The integrated vehicle crash safety design provides longer pre-crash preparation time and design space for the in-crash occupant protection. However, the occupant’s out-of-position displacement caused by vehicle’s pre-crash emergency braking also poses challenges to the conventional restraint system. Despite the long-term promotion of integrated restraint patterns by the vehicle manufacturers, safety regulations and assessment protocols still basically focus on traditional standard crash scenarios. More integrated crash safety test scenarios and testing methods need to be developed. In this study, a sled test scenario representing a moderate rear-end collision in subsequence of emergency braking was designed and conducted. The bio-fidelity of the BioRID II ATD during the emergency braking phase is preliminarily discussed and validated through comparison with a volunteer test. The final forward out-of-position displacement of the BioRID II ATD falls within the range of volunteer
Fei, JingWang, PeifengQiu, HangLiu, YuShen, JiajieCheng, James ChihZhou, QingTan, Puyuan
The automotive subframe, also referred to as a cradle, is a critical chassis structure that supports the engine/electric motor, transmission system, and suspension components. The design of a subframe requires specialized expertise and a thorough evaluation of performance, vehicle integration, mass, and manufacturability. Suspension attachments on the subframe are integral, linking the subframe to the wheels via suspension links, thus demanding high performance standards. The complexity of subframe design constraints presents considerable challenges in developing optimal concepts within compressed timelines. With the automotive industry shifting towards electric vehicles, development cycles have shortened significantly, necessitating the exploration of innovative methods to accelerate the design process. Consequently, AI-driven design tools have gained traction. This study introduces a novel AI model capable of swiftly redesigning subframe concepts based on user-defined raw concepts
Yang, JiongzhiSarkaria, BikramjitKumaraswamy, PrashanthKailkere Srinivas, Praveen
Automotive chassis components are considered as safety critical components and must meet the durability and strength requirements of customer usage. The cases such as the vehicle driving through a pothole or sliding into a curb make the design (mass efficient chassis components) challenging in terms of the physical testing and virtual simulation. Due to the cost and short vehicle development time requirement, it is impractical to conduct physical tests during the early stages of development. Therefore, virtual simulation plays the critical role in the vehicle development process. This paper focuses on virtual co-simulation of vehicle chassis components. Traditional virtual simulation of the chassis components is performed by applying the loads that are recovered from multi-body simulation (MBD) to the Finite Element (FE) models at some of the attachment locations and then apply constraints at other selected attachment locations. In this approach, the chassis components are assessed
Behera, DhirenLi, FanTasci, MineSeo, Young-JinSchulze, MartinKochucheruvil, Binu JoseYanni, TamerBhosale, KiranAluru, Phani
Over the decades, robotics deployments have been driven by the rapid in-parallel research advances in sensing, actuation, simulation, algorithmic control, communication, and high-performance computing among others. Collectively, their integration within a cyber-physical-systems framework has supercharged the increasingly complex realization of the real-time ‘sense-think-act’ robotics paradigm. Successful functioning of modern-day robots relies on seamless integration of increasingly complex systems (coming together at the component-, subsystem-, system- and system-of-system levels) as well as their systematic treatment throughout the life-cycle (from cradle to grave). As a consequence, ‘dependency management’ between the physical/algorithmic inter-dependencies of the multiple system elements is crucial for enabling synergistic (or managing adversarial) outcomes. Furthermore, the steep learning curve for customizing the technology for platform specific deployment discourages domain
Varpe, Harshal BabsahebColeman, JohnSalvi, AmeyaSmereka, JonathonBrudnak, MarkGorsich, DavidKrovi, Venkat N
Model-Based Systems Engineering (MBSE) enables requirements, design, analysis, verification, and validation associated with the development of complex systems. Obtaining data for such systems is dependent on multiple stakeholders and has issues related to communication, data loss, accuracy, and traceability which results in time delays. This paper presents the development of a new process for requirement verification by connecting System Architecture Model (SAM) with multi-fidelity, multi-disciplinary analytical models. Stakeholders can explore design alternatives at a conceptual stage, validate performance, refine system models, and take better informed decisions. The use-case of connecting system requirements to engineering analysis is implemented through ANSYS ModelCenter which integrates MBSE tool CAMEO with simulation tools Motor-CAD and Twin Builder. This automated workflow translates requirements to engineering simulations, captures output and performs validations. System
Upase, BalasahebShroff, Roopesh
This paper presents a highly integrated 4-in-1 power electronics solution for 800V electric vehicle applications, combining on-board charging (OBC), DC boost charging, traction drive, and high-voltage/low-voltage (HV/LV) power conversion in a single housing. Integration is achieved through the use of motor windings for charging and a custom-designed three-port transformer that magnetically couples HV and LV batteries while ensuring galvanic isolation. The system also employs a three-phase open-ended winding machine (OEWM) to support both single-(1P) and three-phase (3P) AC charging. A dual-bank DC/DC architecture allows for seamless integration of a redundant auxiliary power module (APM), enhancing functional safety and autonomy. In AC charging mode, the three-level (3L) T-type inverter operates as a Vienna rectifier for 3P charging and as a totem-pole power factor correction (PFC) circuit for 1P charging, with the motor windings utilized as PFC inductors. In DC boost charging mode
Wang, YichengTaha, WesamAnand, Aniket
Competitive companies constantly seek continuous increases in productivity, quality and services level. Lean Thinking (LT) is an efficient management model recognized in organizations and academia, with an effective management approach, well consolidated theoretically and empirically proven Within Industry 4.0 (I4.0) development concept, manufacturers are confident in the advantages of new technologies and system integration. The combination of Lean and I4.0 practices emerges from the existence of a positive interaction for the evolutionary step to achieve a higher operational performance level (exploitation of finances, workload, materials, machines/devices). In this scenario where Lean Thinking is an excellent starting point to implement such changes with a method and focus on results; that I4.0 offers powerful technologies to increase productivity and flexibility in production processes; but people need to be more considered in processes, in a context aligned with the Industry 5.0
Braggio, LuisMarinho, OsmarSoares, LuisLino, AlanRabelo, FábioMuniz, Jorge
Properly sized under hood components in an electric vehicle is important for effective thermal cooling at different load conditions. Powertrain aggregate loop plays significant role in generating heat with heat sources like eMotor, inverter, variable frequency drivers, on board charger and so on. Radiator being the most critical part in electric vehicle which acts as a heat sink for these powertrain components. Radiator with the help of coolant removes heat generated by different components in powertrain loop. It becomes important to understand the heat generated by the powertrain components at different drive/load scenarios and decide on the correctly sized radiator and fan. Rightly sized radiator and fan combination helps to balance the tradeoff of precise thermal needs in eTruck to an oversized/undersized component. Main objective of this study is to estimate heat loads from system model representing powertrain aggregate components to study the existing radiator capacity and propose
Koti, ShivakumarPatel, VedantChalla, KrishnaGurdak, Michael
Automotive radar plays a crucial role in object detection and tracking. While a standalone radar possesses ideal characteristics, integrating it within a vehicle introduces challenges. The presence of vehicle body, bumper, chassis, and cables in proximity influences the electromagnetic waves emitted by the radar, thereby impacting its performance. To address these challenges, electromagnetic simulations can guide early-stage design modifications. However, operating at very high frequencies around 77GHz and dealing with the large electrical size of complex structures demand specialized simulation techniques to optimize radar integration scenarios. Thus, the primary challenge lies in achieving an optimal balance between accuracy and computational resources/simulation time. This paper outlines the process of radar vehicle integration from an electromagnetic perspective and demonstrates the derivation of optimal solutions through RF simulation.
Rao, SukumaraM K, Yadhu Krishnan
Thermal management is paramount in electric vehicles (EVs) to ensure optimal performance, battery longevity, and overall safety. This paper presents a novel approach to improving the efficiency of cooling systems in automotive passenger vehicles, focusing specifically on battery circuits and e-motor cooling. Current systems employ separate pumps, degassing tanks, valves, and numerous mechanical components, resulting in complex layouts and increased assembly efforts. The primary challenge with the existing setup lies in its complexity and the associated drawbacks, including heat energy loss, increased weight, and space constraints. Moreover, the traditional approach necessitates a significant number of components, leading to higher system costs and maintenance requirements. To address these challenges, this paper proposes an integrated cooling system where the pump, degassing tank, and valves are consolidated into a single housing. This streamlined design reduces the component count by
Anandan, RamThiyagarajan, RajeshSharma, AkashVenkataraman, P
The once rarified field of Artificial Intelligence, and its subset field of Machine Learning have very much permeated most major areas of engineering as well as everyday life. It is already likely that few if any days go by for the average person without some form of interaction with Artificial Intelligence. Inexpensive, fast computers, vast collections of data, and powerful, versatile software tools have transitioned AI and ML models from the exotic to the mainstream for solving a wide variety of engineering problems. In the field of braking, one particularly challenging problem is how to represent tribological behavior of the brake, such as friction and wear, and a closely related behavior, fluid consumption (or piston travel in the case of mechatronic brakes), in a model. This problem has been put in the forefront by the sharply crescendo-ing push for fast vehicle development times, doing high quality system integration work early on, and the starring role of analysis-based tools in
Antanaitis, David
In order to improve the obstacle avoidance ability of autonomous vehicles in complex traffic environments, speed planning, path planning, and tracking control are integrated into one optimization problem. An integrated vehicle trajectory planning and tracking control method combining a pseudo-time-to-collision (PTC) risk assessment model and model predictive control (MPC) is proposed. First, a risk assessment model with PTC probability is proposed by considering the differentiation of the risk on the relative motion states of the self and front vehicles, and the obstacle vehicles in the lateral and longitudinal directions. Then, a three-degrees-of-freedom vehicle dynamics model is established, and the MPC cost function and constraints are constructed from the perspective of the road environment as well as the stability and comfort of the ego-vehicle, combined with the PTC risk assessment model to optimize the control. Finally, a complex multi-vehicle obstacle avoidance scenario is
Yang, TaoLiu, LiangXu, Zhaoping
Under complex and extreme operating conditions, the road adhesion coefficient emerges as a critical state parameter for tire force analysis and vehicle dynamics control. In contrast to model-based estimation methods, intelligent tire technology enables the real-time feedback of tire-road interaction information to the vehicle control system. This paper proposes an approach that integrates intelligent tire systems with machine learning to acquire precise road adhesion coefficients for vehicles. Firstly, taking into account the driving conditions, sensor selection is conducted to develop an intelligent tire hardware acquisition system based on MEMS (Micro-Electro-Mechanical Systems) three-axis acceleration sensors, utilizing a simplified hardware structure and wireless transmission mode. Secondly, through the collection of real vehicle experiment data on different road surfaces, a dataset is gathered for machine learning training. This dataset is subsequently analyzed to discern the tire
Han, ZongzhiLiu, WeidongLiu, DayuGao, ZhenhaiZhao, Yang
Today, the battery development process for automotive applications is relatively decoupled from the vehicle integration and system validation phase. Battery pack design targets are often disregarded at very early development phases even though they are thoroughly linked to the vehicle-level requirements such as performance, lifetime and cost. Here, AVL proposes a methodology guided by virtual testing techniques to frontload vehicle-level validation tasks in the earlier phase of battery pack testing. This paper focuses on the benefits of the methodology for both battery suppliers and automotive OEMs. Applications will be explained, based on a modular virtual testing toolchain, which involves the simulation platform and models as well as the generation of model parameters and test cases.
Kolar, AlesSantiago, PrabhuKural, Emre
In the automotive industry, thermal management plays a very important role to solve the problems of energy saving and emission. The under hood thermal management is one of the critical aspects in vehicle thermal management since it caters to critical aspects of engine cooling, charge air cooling, air conditioning and turbocharger cooling. The appropriate thermal management of these critical components is necessary for ensuring the appropriate performance by the vehicle. Hence, under-hood thermal management is the core of the integrated vehicle thermal management. In the thermal management analysis approaches, the numerical simulation is widely adopted as an important approach. Hence, in this paper a model is developed in MATLAB to handle 1D parametric analysis of the cooling system, while reducing the testing time and resources taken for the product development. The developed model can be used to evaluate multiple aggregate options for CAC, Radiator, Engine, Fan etc. The model predicts
P V, NavaneethPrasad, Suryanarayana A NML, Sankar
Electric technology has gradually changed the form of energy use in transportation. Electric vertical take-off and landing aircraft (eVTOL) will become an important means of transportation in the future, bringing significant changes to urban transportation and providing a more convenient and comfortable travel experience for people. eVTOLs are being extensively researched and developed by the global aviation industry as well as by many innovative technology companies. In this paper, we focus on the system design and testing of the four-axis and eight-propeller eVTOL. The overall parameters of the aircraft are defined, and the energy and power architecture design and analysis are carried out. Carry out the hybrid power supply design of lithium battery and fuel cell, and complete the parameter matching design of power system. The lithium battery and fuel cell hybrid power supply, single propeller test, dual propeller test, system integration verification were carried out, and finally the
Li, HongliangLuo, ZhongpeiDong, WeiWang, Fujing
To many, a digital twin offers “functionality,” or the ability to virtually rerun events that have happened on the real system and the ability to simulate future performance. However, this requires models based on the physics of the system to be built into the digital twin, links to data from sensors on the real live system, and sophisticated algorithms incorporating artificial intelligence (AI) and machine learning (ML). All of this can be used for integrated vehicle health management (IVHM) decisions, such as determining future failure, root cause analysis, and optimized energy performance. All of these can be used to make decisions to optimize the operation of an aircraft—these may even extend into safety-based decisions. The Adoption of Digital Twins in Integrated Vehicle Health Management, however, still has a range of unsettled topics that cover technological reliability, data security and ownership, user presentation and interfaces, as well as certification of the digital twin’s
Phillips, Paul
This standard only defines interconnect, electrical and logical (functional) requirements for the interface between a Micro Munition and the Host. The physical and mechanical interface between the Micro Munition and Host is undefined. Individual programs will define the relevant requirements for physical and mechanical interfaces in the Interface Control Document (ICD) or system specifications. It is acknowledged that this does not guarantee full interoperability of Interface for Micro Munitions (IMM) interfaces until further standardization is achieved.
AS-1B Aircraft Store Integration Committee
The purpose of this SAE Aerospace Information Report (AIR) is to provide guidance for aircraft engine and propeller systems (hereafter referred to as propulsion systems) certification for cybersecurity. Compliance for cybersecurity requires that the engine control, propeller control, monitoring system, and all auxiliary equipment systems and networks associated with the propulsion system (such as nacelle systems, overspeed governors, and thrust reversers) be protected from intentional unauthorized electronic interactions (IUEI) that may result in an adverse effect on the safety of the propulsion system or the airplane. This involves identification of security risks, their mitigation, verification of protections, and their maintenance in service. This document is intended to serve as suitable guidance for propulsion system manufacturers and applicants for propulsion system type certification. It is also intended to provide guidance for subsequent propulsion system integration into
E-36 Electronic Engine Controls Committee
In recent years, the complexity and sophistication of electronic and Electrical (E/E) systems in modern vehicles have been rapidly increasing. As a result, the need for a robust and scalable E/E architecture has become increasingly important. This paper presents a comprehensive survey of the current state-of-the-art in E/E architecture for automotive systems. The survey covers a range of topics including hardware and software architectures, communication protocols, safety and security considerations, and system integration. We also review recent advances in E/E architecture such as the adoption of service-oriented architecture (SOA), the use of Ethernet-based networks, and the increasing use of software-defined architectures. Additionally, we discuss the challenges and open research directions in E/E architecture such as the integration of emerging technologies like autonomous driving and the impact of electric and hybrid vehicles. The survey provides a valuable resource for
N, VigneshKumar, MiteshAchuthan, BalasubramanianBadade, ShivajiShivakumar, PrakashKeshri, Ajeet
ABSTRACT Multiple Soldier Virtual and Operational Experiments have shown that Ground Vehicle Paired Unmanned Aircraft Systems are transformative for future Army Operations. Previous prototyping exercises have demonstrated that existing Department of Defense and industry standards are insufficient in supporting the Army’s desired interoperability and capability needs. The U.S. Army chartered an effort to develop a Modular Open System Approach for Ground Vehicle Paired UAS which is still being developed. The history of the task and an outline of the architecture is presented along with lessons learned regarding MOSA initiatives and design processes which may help future MOSA efforts. Citation: S. Watza, N. Cooper, “Design of a Ground Vehicle Paired Unmanned Aircraft System Modular Open System Approach for the U.S. Army Robotic and Autonomous System’s Ground Interoperability Profile,” In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), NDIA, Novi
Watza, SpencerCooper, Neil
A digital twin is a virtual model that accurately imitates a physical asset. This can be as complex as an entire vehicle, a subsystem, and down to a small functioning component. The digital twin has a level of fidelity that aligns to the goals of the project team. The usage of a digital twin inside a digital engineering (DE) ecosystem permits architecture and design decisions for optimized product behavior, performance, and interactions. This paper demonstrates a methodology to incorporate the digital twin concept from requirement analysis, low fidelity feature level simulation, rapid prototypes running inside a System Integration Lab, and high fidelity virtual prototypes executing in an entirely virtual environment.
Kanon, Robert J.Griffin, Kevin W.Fernando, RaveenShah, AmirKouba, RussFeury, Mark
The Army can increase its software modernization effort for Embedded System software development by leveraging the Cloud to expand the capability of the DevSecOps environment to include automated testing at scale. The Cloud will support the integration of current and new off-the-shelf technologies; and merging next generation technologies from industry partners into a coherent DevSecOps Cloud ecosystem. The following areas are critical to meeting mission requirements and applications: virtual simulation, trade study analytics, technology adoption, DevSecOps capabilities, artificial intelligence applications and infrastructure, and collaborative single vehicle Systems Integration Laboratory (SIL). These areas are all essential to shortening the vehicle product lifecycle and time to deliver mission essential capabilities to the field to support warfighter needs.
Brabbs, JohnJones, B. Colby
As demand for consumer electric vehicles (EVs) has drastically increased in recent years, manufacturers have been working to bring heavy-duty EVs to market to compete with Class 6-8 diesel-powered trucks. Many high-profile companies have committed to begin electrifying their fleet operations, but have yet to implement EVs at scale due to their limited range, long charging times, sparse charging infrastructure, and lack of data from in-use operation. Thus far, EVs have been disproportionately implemented by larger fleets with more resources. To aid fleet operators, it is imperative to develop tools to evaluate the electrification potential of heavy-duty fleets. However, commercially available tools, designed mostly for light-duty vehicles, are inadequate for making electrification recommendations tailored to a fleet of heavy-duty vehicles. The main challenge is that light-duty tools do not estimate real-time vehicle mass, a factor that has a disproportionate impact on the energy
Badheka, AadityaEagon, Matthew JohnFakhimi, SetayeshWiringa, PeterMiller, EricKotz, AndrewNorthrop, William
MOSA (Modular Open System Approach) provides a framework for efficient and sustainable design of complex integrated systems. In domain of embedded technology, the MOSA as-is does a good job in identifying modular software and hardware frameworks required to establish a common baseline for generic open architecture. On the other hand, it does not cover physical aircraft integration, integration methodology and other constituent elements essential for design of robust interfaces and integrated embedded systems, which are owned by OEMs and their suppliers. The definition of open interfaces is a key constituent in definition of MOSA-compliant architectures. An efficient system integration lifecycle requires unambiguous interfacing among hosted functions. Open interfaces and Ethernet are core system integration technologies and should be integrated and configured with other software/hardware framework elements, to enable hard RT, real-time and soft-time application hosting. The system
Jakovljevic, MirkoFinnegan, DanielZischka, WolframSoares, Alvaro
Upstarts and heavy-hitter suppliers alike are fast-tracking advances in existing technology - as well as radical new solutions. Electric powertrain development continues at a fervent pace as OEMs, suppliers and startups try to optimize current technology while forging ahead into new areas. Although battery engineering and development enjoys almost daily industry discussion, traction motor and power electronics remain the investment focus of many established and startup suppliers. Efficiencies gained in these systems can significantly reduce an EV's required amount of expensive battery capacity. It's a rapidly expanding market, seemingly with plenty of room for myriad new players and fresh ideas. Vitesco Technologies, the powertrain supplier spun from Continental in 2019, has committed to electrification in all future development. As a result, it generated $888 million in revenue in 2021. Thomas Stierle, head of the the company's Electrification Solutions division, said it expects
Clonts, Chris
EV battery enclosures are a hotbed of subsystem design, materials innovation and vehicle integration. Whether you call them packs, boxes or trays, the structures that envelop and protect EV battery cells and their supporting electrical and thermal-management hardware are among the industry's top subsystem priorities. Optimizing the battery pack involves a host of manufacturing and material choices, mass and package tradeoffs, safety provisions and structural design/engineering challenges, OEM and supplier experts told SAE Media. “Do you want the battery pack bolted into the vehicle or integrated into the body structure?” asked Darren Womack, senior department manager, body and structures, at Magna's global R&D group. Hot stamping, cold stamping, roll-forming, hydroforming, casting and steel, aluminum, composites and thermoplastics - are all raising “lively discussions” in pack development, he noted at a recent meeting of analysts.
Brooke, Lindsay
This paper aims to design a system to generate energy from flowing wind due to the motion of a vehicle on the road or from the flow of wind in compact areas to utilize the wasteful energy into a useful one. It is envisaged via a design and the improvement in efficiency of a Savonius Vertical Axis Wind Turbine and coupled in an integrated system with a Triboelectric Nanogenerator (TENG) that can generate a good amount of electrical energy. Aerodynamic calculations are performed numerically using a CFD Software, and the efficiency of the TENG is evaluated analytically. The Turbine's coefficient of power is validated with the literature for an inlet velocity of 7 m/s with a Tip Speed Ratio (TSR) of 0.75 and found to reasonably agree with that of experimental results. The baseline design is modified with a new blade arc angle and rotor position angle based on the recommended parameter ranges suggested by previous researchers. Simulations have been performed for different TSR values ranging
Dadhich, BhaveshBamnoliya, FenilRajasingh, EdisonSenthilkumar, Sundararaj
Active systems, from active safety to energy management, play a crucial role in the development of new road vehicles. However, the increasing number of controllers creates an important issue regarding complexity and system integration. This article proposes a high-level controller managing the individual active systems—namely, Torque Vectoring (TV), Active Aerodynamics, Active Suspension, and Active Safety (Anti-lock Braking System [ABS], Traction Control, and Electronic Stability Program [ESP])—through a dynamic state variation. The high-level controller is implemented and validated in a simulation environment, with a series of tests, and evaluate the performance of the original design and the proposed high-level control. Then, a comparison of the Virtual Driver (VD) response and the Driver-in-the-Loop (DiL) behavior is performed to assess the limits between virtual simulation and real-driver response in a lap time condition. The main advantages of the proposed design methodology are
de Carvalho Pinheiro, HenriqueCarello, Massimiliana
In this article, the integrated vehicle stability control strategy by a combination of active suspension (AS), torque vectoring control (TVC), and direct yaw control (DYC) is proposed to investigate the improvement of vehicle stability. By considering the differences of control targets for variable vehicle subsystems, the proposed strategy includes the three levels of hierarchical structure to coordinate these vehicle subsystems for optimal functions in relation to the vehicle subsystems. At the upper level, the vehicle estimates the posture and dynamic state. At the middle level of the structure, the method of coordination is introduced. Furthermore, the designed AS is based on H∞ logic theory. The TVC design is based on the principle of indirect yaw moment theory, and the DYC design is based on linear quadratic regulator (LQR) control algorithm are demonstrated at the lower level. In order to verify the control effect, the MATLAB/Simulink platform is used for the establishment of the
Hu, ZhimingLiao, YinshengLiu, JianjianXu, Haolun
Carbon/Carbon brakes in Racing are in use since the 80’s, directly derived from aircraft brake materials. Racing cars evolved so much since then that dedicated materials, design, quality tools, simulation & testing tools have been developed through the years. Today a Racing car brake is no longer just a brake but it’s a very integrated system in the vehicle aerodynamics, a way to control tyre temperature and to optimize BBW system strategy in order to improve overall performance. Brembo effort on C/C brake materials will be shown, including: new patented/patent pending fiber architectures to tune desired final mechanical/thermal properties self-developed CFD and chemical simulation of CVD furnaces to optimize product variability and maximize production efficiency self-developed non-destructive quality tests to check 100% of actual production advanced structural and CFD models to achieve efficient extreme cooling patterns materials that may be tuned to the thermal, mechanical, friction
Cividini, OmarPassoni, Raffaello
ABSTRACT Vehicle design today takes longer than it ever has in the past largely due to the abundance of requirements, standards, and new design techniques; this trend is not likely to change any time soon. This paper will explore how advancements in gaming engines can be leveraged to bring realistic visualization and virtual prototypes to the beginning of the design cycle, integrate subsystems earlier in the design, provide advanced simulation capabilities, and ensure that the final design not only meets the requirements but is fully vetted by stakeholders and meets the needs of the platform. The Unreal Engine and Bravo Framework can be used to bring this and more to vehicle designs to reduce design churn and bring better products to market faster. Citation: A. Diepen, O. Vazquez, A. Black, C. Gaff “Leveraging Simulation Tools to Accelerate Design,” In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), NDIA, Novi, MI, Aug. 16-18, 2022.
Diepen, AndyVazquez, OrlandoBlack, AndrewGaff, Chuck
ABSTRACT Hardware/software integrated system ensures a system will operate as intended in the same configuration it will be used in the field. Manual system testing can be a very slow and error prone process, as well as being incapable of testing interfaces that humans cannot interact with. Many existing solutions exist to introduce test hardware into the loop for verifying systems, but most of these solutions provide a separate component for each hardware interface. This paper presents an approach for a single integrated system that can test all hardware interfaces of a system under test, managed by a single controller. This test system provides the capability to abstract away the hardware being tested so a test developer can develop tests while only understanding the manual interfaces of the system being tested. We show that this approach can provide a significant acceleration to the time to execute tests, as well as improving the reliability, and consistency of the tests. Citation
Lingg, MichaelKushnier, Timothy JProenza, RodolfoPaul, HowardGrimes, BrendanThompson, Emory
ABSTRACT As U.S. Army leadership continues to invest in novel technological systems to give warfighters a decisive edge for mounted and dismounted operations, the Integrated Visual Augmentation System (IVAS) and other similar systems are in the spotlight. Continuing to put capable systems that integrate fighting, rehearsing, and training operations into the hands of warfighters will be a key delineator for the future force to achieve and maintain overmatch in an all-domain operational environment populated by near-peer threats. The utility and effectiveness of these new systems will depend on the degree to which the capabilities and limitations of humans are considered in context during development and testing. This manuscript will survey how formal and informal Human Systems Integration planning can positively impact system development and will describe a Helmet Mounted Display (HMD) case study.
Michelson, StuartRay, Jerry
This SAE Aerospace Recommended Practice recommends general criteria for the development and installation of an aircraft emergency signal system to permit any crew member (flight or cabin) to inform all other crew members that an emergency evacuation situation exists and that an evacuation has been or should be immediately started.
S-9B Cabin Interiors and Furnishings Committee
Items per page:
1 – 50 of 399