Information Reports - SAE Mobilus

Items (2,822)
The information in this SAE Recommended Practice has been compiled by Technical Committee 1 (Engine Lubrication) of the SAE Fuels and Lubricants Division. The intent is to provide those concerned with the design and maintenance of two-stroke-cycle engines with a better understanding of the properties of two-stroke-cycle lubricants. Reference is also made to test procedures which may be used to measure the chemical and physical characteristics of these lubricants.
Fuels and Lubricants TC 1 Engine Lubrication
This AIR provides commonly used design considerations for using composite component parts as secondary structures in landing gear applications.
A-5B Gears, Struts and Couplings Committee
The scope of this document is to provide an overview and guidance to enable and monitor the use of Digital Thread data standards and the quantification of digital tread efficacy with the Digital Thread Qualitative Index. This document does not standardize the process. However, it does provide a methodology to determine efficiencies and inefficiencies of Digital Thread utilization across various phases of the product lifecycle.
G-31 Digital Transactions for Aerospace
The scope of this document is to provide an overview, process, and implementation guidance on use of blockchain technology for a secure, immutable, and traceable digital authorized release certificate. This document does not standardize the process nor is it meant for authorities to recognize the standard as an acceptable means of recording data collected through the required authorized release certificate (ARC) tags.
G-31 Digital Transactions for Aerospace
This manual contains information regarding aircraft deicing/anti-icing surfaces and areas.
G-12M Methods Committee
This AIR presents an abbreviated review of the metallurgical phenomena known as whiskers. It is not all encompassing; rather, it is intended to introduce the design engineer to the technical issues of metallic whiskers, their formation, and the potentially dangerous problems they can cause.
AMS B Finishes Processes and Fluids Committee
This SAE Aerospace Information Report (AIR) discusses the forms that air may take in aircraft hydraulic systems. Further, the effects of the various air forms on system operation are addressed. Recommended system design to prevent air effects and maintenance procedures to prevent and remove air are provided. Nitrogen leakage from accumulators is also a source of gas in hydraulic systems and may compose a portion of the “air” in the hydraulic system. The term “air” in this report does not differentiate between a gas composed strictly of normal atmospheric air or one that includes a mixture of additional nitrogen as well. The discussions of the report apply equally with any proportions of atmospheric air and nitrogen in the system.
A-6C1 Fluids and Contamination Control Committee
This document describes analytical methods for calculating the attenuation of the level of the sound propagating from an airplane to locations on the ground and to the side of the flight path of an airplane during ground roll, climbout after liftoff, and landing operations. Both level and non-level ground scenarios may be modeled using these methods, however application is only directly applicable to terrain without significant undulations, which may cause multiple reflections and/or multiple shielding effects. This attenuation is termed lateral attenuation and is in excess of the attenuation from wave divergence and atmospheric absorption. The methods for calculating the lateral attenuation of the sound apply to: turbofan-powered transport-category airplanes with engines mounted at the rear of the fuselage (on the sides of the fuselage or in the center of the fuselage as well as on the sides) or under the wings propeller-driven transport-category or general-aviation airplanes
A-21 Aircraft Noise Measurement Aviation Emission Modeling
This SAE Aerospace Information Report (AIR) provides guidelines for the design of portable Controlled Contamination Areas (CCAs) that can provide localized environmental control when processing a repair at the airplane or in a hangar environment. The use of a portable CCA may result in a better quality repair. The use of a portable CCA may assist in achieving the environmental requirements for bonded repairs specified in an approved repair procedure. This provides an option to accomplish a repair on nonremovable structure or difficult to remove components.
AMS CACRC Commercial Aircraft Composite Repair Committee
Engines subject to dust, industrial pollution, saltwater contamination or other chemically laden atmosphere (including pesticides and herbicides) lose performance due to deposits of contaminants on surfaces in the aidgas flow path. Engine wash and engine rinse procedures are utilized to restore turbine engine performance. These procedures are generated by the engine manufacturer and are included in the Engine Maintenance/Service Manuals. For most turbine engines these procedures are similar in concept and practice; however, application details, choice of solvents and many other service features can vary from engine manufacturer to engine manufacturer and may even vary within the range of engine models produced by any manufacturer. The intent of this SAE Aerospace Information Report (AIR) is to outline the general nature, considerations, and background of engine wash and engine rinse and is directed towards the needs of the entry level engineer, service engineer, and those involved in
S-12 Powered Lift Propulsion Committee
The objective of this document is to provide a classification of AI techniques that may be used in AI-based systems for aeronautical products. Aeronautical products include products in Airborne and Air Traffic Management (ATM) and Air Navigation Systems (ANS) domains for crewed and uncrewed aircraft. This document is: Intended to provide an understanding of the AI space, which will improve over time Not intended to provide guidance, objectives, or safety considerations A scenario builder for AI technologies, in particular supervised learning The publication of a taxonomy document for the aviation domain is an opportunity to support other AI standardization initiatives that will also publish taxonomy documents. Disclaimer: This document provides content to support other products of the SAE G-34/EUROCAE WG-114 Committee.
G-34 Artificial Intelligence in Aviation
This SAE Technical Information Report (TIR) establishes the instructions for the documents required for the variety of potential functions for PEV communications, energy transfer options, interoperability, and security. This includes the history, current status, and future plans for migrating through these documents created in the Hybrid Communication and Interoperability Task Force, based on functional objective (e.g., [1] If I want to do V2G with an off-board inverter, what documents and items within them do I need, [2] What do we intend for V3 of SAE J2953, …).
Hybrid - EV Committee
The figures in this SAE Information Report illustrate the principle that, regardless of composition, steels of the same cross-sectional hardness produced by tempering after through hardening will have approximately the same longitudinal1 tensile strength at room temperature. Figure 1 shows the relation between hardness and longitudinal tensile strength of 0.30 to 0.50% carbon steels in the fully hardened and tempered, as rolled, normalized, and annealed conditions. Figure 2 showing the relation between longitudinal tensile strength and yield strength, and Figure 3 illustrating longitudinal tensile strength versus reduction of area, are typical of steels in the quenched and tempered condition. Figure 3 shows the direct relationship between ductility and hardness and illustrates the fact that the reduction of area decreases as hardness increases, and that, for a given hardness, the reduction of area is generally higher for alloy steels than for plain carbon steels. It is evident from
Metals Technical Committee
This AIR describes the current scientific and engineering principles of gas turbine lubricant performance testing per AS5780 and identifies gaps in our understanding of the technology to help the continuous improvement of this specification. Test methodologies under development will also be described for consideration during future revisions of AS5780.
E-34 Propulsion Lubricants Committee
This SAE Aerospace Information Report (AIR) provides an overview of temperature measurement techniques for various locations of aircraft gas turbine engines while focusing on current usage and methods, systems, selection criteria, and types of hardware.
E-32 Aerospace Propulsion Systems Health Management
This SAE Aerospace Information Report (AIR) covers forced air technology including: reference material, equipment, safety, operation, and methodology. This resource document is intended to provide information and minimum safety guidelines regarding the use of forced air or forced air/fluid equipment to remove frozen contaminants.
G-12E Equipment Committee
This SAE Information Report documents efforts toward developing a test method for the evaluation of hose protection sleeves used in hydraulic fluid power applications. These sleeves are intended for general application and hydraulic systems on industrial equipment and commercial products. These sleeves shall be capable of providing protection to pin hole failures in hydraulic systems operating to working pressures specified by the manufacturer. Hose assembly burst containment is not in the scope of this document.
Hydraulic Hose and Hose Fittings Committee
In order to compare test results obtained from different crash test facilities, standardized coordinate systems need to be defined for crash test dummies, vehicle structures, and laboratory fixtures. In addition, recorded polarities for various transducer outputs need to be defined relative to positive directions of the appropriate coordinate systems. This SAE Information Report describes the standardized sign convention and recorded output polarities for various transducers used in crash testing.
Safety Test Instrumentation Standards Committee
This SAE Aerospace Information Report (AIR) summarizes data and background relative to age control of specific classes of those nitrile type synthetic elastomers used in sealing devices which are resistant to petroleum base hydraulic fluids, lubricating oils, and aircraft fuels. This includes, but is not limited to, those nitrile (NBR or BUNA-N) elastomers previously covered by Section I of MIL-STD-1523.
AMS CE Elastomers Committee
Increased use of advanced composite structural materials on aircraft has resulted in the need to address the more demanding quality and nondestructive testing procedures. Accordingly, increased utilization of solid laminate composites is driving changes to airline NDI/NDT training requirements and greater emphasis on the application of accurate NDI/NDT methods for composite structures. Teaching modules, including an introduction to composite materials, composite NDI/NDT theory and practice, special cases and lessons learned, are included in this document as well as various hands-on NDI/NDT exercises. A set of proficiency specimens containing realistic composite structures and representative damage are available to reinforce teaching points and evaluate inspector’s proficiency. Extensive details of the guidance modules, hands-on exercises, and proficiency specimens are all presented in this document. This document does not replace OEM guidance as may be specific to material, process
AMS CACRC Commercial Aircraft Composite Repair Committee
This SAE Aerospace Information Report (AIR) identifies and summarizes the various factors that must be considered and evaluated by the design or specifying engineer in establishing the specifications and design characteristics of battery-powered aircraft tow tractors. This AIR is presented in two parts. The first part is simply a summarization of design factors that must be considered in establishing vehicle specifications and design characteristics. The second part refers particularly to the performance characteristics of an aircraft tow tractor. Some definitions, formulas, data, and an example are provided mainly for assisting the specifying engineers of potential buyers and users of aircraft tow tractors in the evaluation and comparison of their requirements with the performance capabilities of the various tow tractors offered by the tow tractor manufacturers. Although the design engineers could also use the formulas and data in their calculations of the performance specifications
AGE-3 Aircraft Ground Support Equipment Committee
This SAE Information Report is primarily to familiarize the designer of hydraulic powered machinery with the necessity for oil filtration in the hydraulic power circuit, the degree of system cleanliness required, types of filtration and filters available, and their location and maintenance in the hydraulic circuit.
CTTC C1, Hydraulic Systems
This SAE Information Report describes the collection of IUMPR data required by the heavy-duty onboard diagnostic regulation 13 CCR § 1971.1 (l)(2.3.3), using SAE J1939-defined messages incorporated in a suite of software functions.
Truck and Bus Control and Communications Network Committee
This SAE Information Report summarizes the characteristics of carburized steels and factors involved in controlling hardness, microstructure, and residual stress. Methods of determining case hardenability are reviewed, as well as methods to test for freedom from non-martensitic structures in the carburized case. Factors influencing case hardenability are also reviewed. Methods of predicting case hardenability are included, with examples of calculations for several standard carburizing steels. A bibliography is included in 2.2. The references provide more detailed information on the topics discussed in this document.
Metals Technical Committee
The scope of this SAE Aerospace Information Report (AIR) is to discuss factors affecting visibility of aircraft navigation and anticollision lights, enabling those concerned with their use to have a better technical understanding of such factors, and to aid in exercising appropriate judgment in the many possible flight eventualities.
A-20B Exterior Lighting Committee
The purpose of this AIR is to establish a baseline for hydrogen fueling protocol and process limits for both gaseous and liquid hydrogen fueling of aircraft (eCTOL, eRotor, eVTOL, LTA) at the airport from small aircraft to wide-body. A further goal is to harmonize and establish common aircraft fueling safety definitions wherever possible with other SAE and EUROCAE standards and NFPA codes alike. Hydrogen fueling process limits (including the fuel temperature, the maximum flow rate, time required, etc.) are affected by factors such as ambient temperature, fuel delivery temperature, and initial pressure in the hydrogen storage system. The further goal is to establish basic fueling protocols within these limits as a starting point while evaluating minimum criteria, including evaluation of fueling with or without communications. AIR8466 establishes the protocol and process limits for hydrogen fueling of aircraft and plans to establish fueling protocols starting with small aircraft
AE-5C Aviation Ground Fueling Systems Committee
This SAE Aerospace Information Report (AIR) has been written for individuals associated with ground level testing of turbofan and turbojet engines and particularly for those who might be interested in investigating the performance characteristics of a new test cell design or of proposed modifications to an existing test cell by means of a scale model test.
EG-1E Gas Turbine Test Facilities and Equipment
This document proposes a method to demonstrate compliance to engine certification rules requiring tolerance of the control system to single failures leading to Loss of Power Control (LOPC) or Loss of Thrust Control (LOTC) for electric or hybrid engines. At issue 1, the document was developed to address only fully electric engine configurations targeting single engine CS/part 23 level 1 and 2 aircraft applications. The methodology proposed herein is based on an alternative definition of Loss of Power Control (LOPC) proposed by EASA, the FAA, TCCA, and ANAC in a joint Decision Document. It is therefore only applicable to projects which elect to implement this authority-proposed alternative definition. Other approaches for the demonstration of compliance of electric engines to control system single fault tolerance requirements, including approaches based on legacy practices applicable to piston engines, remain possible. They are, however, outside of the scope of this document. Future
E-40 Electrified Propulsion Committee
The purpose of this SAE Aerospace Information Report (AIR) is to provide rotorcraft and engine designers with a better understanding of turboshaft engine idle power characteristics and objectives to be considered in the design and integration process. For the purpose of this document, idle is the lowest suitable steady-state power setting, most commonly corresponding to a gas generator speed setting or range. In general, a lower engine idle setting is desired by the airframer to reduce noise, fuel consumption, and main rotor downwash when on the ground and to reduce the size requirement of a rotor brake system. In contrast, the engine manufacturer generally prefers a higher engine idle setting, as operation further away from the engine design speed involves more challenges in operability and mechanical design. A variety of rotorcraft and engine factors are described for consideration. Some typical engine power and torque trends are presented for illustrative purposes. The information
S-12 Powered Lift Propulsion Committee
This SAE Aerospace Information Report (AIR) provides additional information and the rationale used for certain elements of AS6413. This AIR is provided to assist persons performing the tests described in AS6413 with an understanding of certain aspects of the test apparatus and the test criteria, such as the volume of the test chamber, cell heating rate, and the pass/fail criteria. It will be updated concurrently with AS6413 to explain changes, provide rationales, and cover future cell/battery technologies as they arise.
G-27 Lithium Battery Packaging Performance
This document provides guidance for ECS design for UA primarily by reference to existing applicable SAE AC-9 documents with indication of how they would apply and how they may need to be adapted for UA. This document provides guidance related to environmental control for onboard equipment, cargo, animals, and passengers. This document cannot provide detail design guidance for all potential types of UA. Limited information is available for ECS requirements for UA that may carry passengers, but it should be expected that the same comfort and safety standards would be applied to UA as prescribed in current civil aviation authority rules and military specifications. Additional requirements unique to UA can be expected for totally autonomous UA operation with no provision for flight or ground crew monitoring and intervention in the event of ECS failures or malfunctions. This document does not pertain to the related ground stations that may be controlling the UA.
AC-9 Aircraft Environmental Systems Committee
Wire and cable products progress through a series of handling or operational steps from the time they leave the manufacturer, and until a finished harness or assembly is ready for installation on a vehicle. Throughout these many steps, environmental or processing conditions may be present which can generate damage detrimental to the wire or cable and/or its intended application.
AE-8A Elec Wiring and Fiber Optic Interconnect Sys Install
This document is intended for connectors typically found on aerospace platforms and ground support equipment. The document provides the reasons for proper fiber optic cleaning, an in-depth discussion of available cleaning methods, materials, packaging, safety, and environmental concerns. Applicable personnel include: Managers Designers Engineers Technicians Trainers/Instructors Third Party Maintenance Agencies Quality Personnel Purchasing Shipping/Receiving Production
AS-3 Fiber Optics and Applied Photonics Committee
This document provides an overview of currently available and need to be developed modeling and simulation capabilities required for implementing robust and reliable Aerospace WDM LAN applications.
AS-3 Fiber Optics and Applied Photonics Committee
The purpose of this document is to serve as a resource to aerospace designers who are planning to utilize Wavelength Division Multiplexed (WDM) interconnects and components. Many WDM commercial systems exist and they incorporate a number of existing, commercially supported, standards that define the critical parameters to guide the development of these systems. These standards ensure interoperability between the elements within these systems. The commercial industry is motivated to utilize these standards to minimize the amount of tailored development. However, since some of the aerospace parameters are not satisfied by the commercial devices, this document will also try to extend the commercial parameters to those that are necessary for aerospace systems. The document provides cross-references to existing or emerging optical component and subsystem standards. These parameter definitions, test methods, and procedures typically apply to telecommunications application and in some cases
AS-3 Fiber Optics and Applied Photonics Committee
This document (AIR6005) provides the framework for the specifications of a WDM OBN within the SAE AS5659 WDM LAN Specification document family, in particular, the Transparent Optical Backbone Network Specification. This framework includes potential requirements, technical background, investigation and context to support the writing of SAE’s WDM LAN specifications documents. The SAE’s AS6005 WDM OBN document describes a transparent optical network which contains optical components and optical interfaces to perform optical transport, optical add/drop, optical amplification, optical routing, and optical switching functions. The conforming optical signal interfaces for the data plane of the WDM OBN are defined. The conforming signal interfaces for the control and management planes of this network are also defined. The control and management plane signals may be either electrical or optical. If successful, a WDM LAN standard is anticipated to include multiple variants that may get created
AS-3 Fiber Optics and Applied Photonics Committee
This document provides an orientation to fusion splicing technology for optical fibers and fiber optic cable. It is intended for managers, designers, installers, and repair and maintenance personnel who need to understand the process of fusion splicing. This technology is widely used in telecommunications and industrial applications, and is finding acceptance in aerospace applications.
AS-3 Fiber Optics and Applied Photonics Committee
This document draws from, summarizes, and explains existing broadly accepted engineering best practices. This document defines the process and procedure for application of various best practice methods. This document is specifically intended as a standard for the engineering practice of development and execution of a link loss power budget for a general aerospace system related digital fiber optic link. It is not intended to specify the values associated with specific categories or implementations of digital fiber optic links. This document is intended to address both existing digital fiber optic link technology and accommodate new and emerging technologies. The proper application of various calculation methods is provided to determine link loss power budget(s), that depend on differing requirements on aerospace programs. A list of parameters is provided as guidance for aerospace fiber optics applications along with a check list to help assure that appropriate parameters and
AS-3 Fiber Optics and Applied Photonics Committee
This Aerospace Information Report (AIR) is limited in scope to the general consideration of environmental control system noise and its effect on occupant comfort. Additional information on the control of environmental control system noise may be found in 2.3 and in the documents referenced throughout the text. This document does not contain sufficient direction and detail to accomplish effective and complete acoustic designs.
AC-9 Aircraft Environmental Systems Committee
This SAE Aerospace Information Report (AIR) contains information on the thermal design requirements of airborne avionic systems used in military airborne applications. Methods are explored which are commonly used to provide thermal control of avionic systems. Both air and liquid cooled systems are discussed.
AC-9 Aircraft Environmental Systems Committee
This SAE Aerospace Information Report (AIR) provides information on air quality and some of the factors affecting the perception of cabin air quality in commercial aircraft cabin air. Also a typical safety analysis process utilizing a Functional Hazard Assessment approach is discussed.
AC-9 Aircraft Environmental Systems Committee
This Aerospace Information Report (AIR) outlines the design considerations and criteria for the control of water carryover from the environmental control system (ECS) with respect to causes and indicated corrective or preventative action. In addition, condensation on structure will be reviewed with possible preventative action described.
AC-9 Aircraft Environmental Systems Committee
This SAE Aerospace Information Report (AIR) has been written for individuals associated with the ground-level testing of large turbofan and turbojet engines, particularly those who are interested in infrasound phenomena.
EG-1E Gas Turbine Test Facilities and Equipment
This SAE Aerospace Information Report (AIR) has been compiled to provide information on: a The particularities of EHAs and their derivatives that make their implementation useful to meet some specific system requirements, solve some system architecture issues, or provide system optimization within the flight control actuation and hydraulic generation/distribution perimeter b System architecture drivers and basic schematic diagrams, actuator principle schematic diagrams, and basic characteristics, for various civil and military aircraft
A-6B2 Electrohydrostatic Actuation Committee
Currently, existing civil aviation standards address the design and certification of oxygen dispensing devices that utilize oxygen sources supplying at least 99.5% oxygen. This Aerospace Information Report discusses issues relating to the use in the passenger cabin of oxygen enriched breathing gas mixtures having an oxygen content of less than 99.5% and describes one method of showing that passenger oxygen dispensing devices provide suitable hypoxia protection when used with such mixtures.
A-10 Aircraft Oxygen Equipment Committee
Items per page:
1 – 50 of 2822