Information Reports - SAE Mobilus
This SAE Aerospace Information Report (AIR) provides an overview of temperature measurement techniques for various locations of aircraft gas turbine engines while focusing on current usage and methods, systems, selection criteria, and types of hardware
This SAE Aerospace Information Report (AIR) covers forced air technology including: reference material, equipment, safety, operation, and methodology. This resource document is intended to provide information and minimum safety guidelines regarding the use of forced air or forced air/fluid equipment to remove frozen contaminants
In order to compare test results obtained from different crash test facilities, standardized coordinate systems need to be defined for crash test dummies, vehicle structures, and laboratory fixtures. In addition, recorded polarities for various transducer outputs need to be defined relative to positive directions of the appropriate coordinate systems. This SAE Information Report describes the standardized sign convention and recorded output polarities for various transducers used in crash testing
This SAE Information Report describes the collection of IUMPR data required by the heavy-duty onboard diagnostic regulation 13 CCR § 1971.1 (l)(2.3.3), using SAE J1939-defined messages incorporated in a suite of software functions
This SAE Information Report summarizes the characteristics of carburized steels and factors involved in controlling hardness, microstructure, and residual stress. Methods of determining case hardenability are reviewed, as well as methods to test for freedom from non-martensitic structures in the carburized case. Factors influencing case hardenability are also reviewed. Methods of predicting case hardenability are included, with examples of calculations for several standard carburizing steels. A bibliography is included in 2.2. The references provide more detailed information on the topics discussed in this document
This SAE Information Report is primarily to familiarize the designer of hydraulic powered machinery with the necessity for oil filtration in the hydraulic power circuit, the degree of system cleanliness required, types of filtration and filters available, and their location and maintenance in the hydraulic circuit
This SAE Aerospace Information Report (AIR) summarizes data and background relative to age control of specific classes of those nitrile type synthetic elastomers used in sealing devices which are resistant to petroleum base hydraulic fluids, lubricating oils, and aircraft fuels. This includes, but is not limited to, those nitrile (NBR or BUNA-N) elastomers previously covered by Section I of MIL-STD-1523
This SAE Aerospace Information Report (AIR) identifies and summarizes the various factors that must be considered and evaluated by the design or specifying engineer in establishing the specifications and design characteristics of battery-powered aircraft tow tractors. This AIR is presented in two parts. The first part is simply a summarization of design factors that must be considered in establishing vehicle specifications and design characteristics. The second part refers particularly to the performance characteristics of an aircraft tow tractor. Some definitions, formulas, data, and an example are provided mainly for assisting the specifying engineers of potential buyers and users of aircraft tow tractors in the evaluation and comparison of their requirements with the performance capabilities of the various tow tractors offered by the tow tractor manufacturers. Although the design engineers could also use the formulas and data in their calculations of the performance specifications
The scope of this SAE Aerospace Information Report (AIR) is to discuss factors affecting visibility of aircraft navigation and anticollision lights, enabling those concerned with their use to have a better technical understanding of such factors, and to aid in exercising appropriate judgment in the many possible flight eventualities
This SAE Aerospace Information Report (AIR) has been written for individuals associated with ground level testing of turbofan and turbojet engines and particularly for those who might be interested in investigating the performance characteristics of a new test cell design or of proposed modifications to an existing test cell by means of a scale model test
Wire and cable products progress through a series of handling or operational steps from the time they leave the manufacturer, and until a finished harness or assembly is ready for installation on a vehicle. Throughout these many steps, environmental or processing conditions may be present which can generate damage detrimental to the wire or cable and/or its intended application
This SAE Aerospace Information Report (AIR) contains information on the thermal design requirements of airborne avionic systems used in military airborne applications. Methods are explored which are commonly used to provide thermal control of avionic systems. Both air and liquid cooled systems are discussed
This Aerospace Information Report (AIR) is limited in scope to the general consideration of environmental control system noise and its effect on occupant comfort. Additional information on the control of environmental control system noise may be found in 2.3 and in the documents referenced throughout the text. This document does not contain sufficient direction and detail to accomplish effective and complete acoustic designs
This Aerospace Information Report (AIR) outlines the design considerations and criteria for the control of water carryover from the environmental control system (ECS) with respect to causes and indicated corrective or preventative action. In addition, condensation on structure will be reviewed with possible preventative action described
This SAE Aerospace Information Report (AIR) has been written for individuals associated with the ground-level testing of large turbofan and turbojet engines, particularly those who are interested in infrasound phenomena
This SAE Aerospace Information Report (AIR) considers the following major areas: 1 major components and their ratings; 2 selection criteria for optimum design balance for electrical systems; 3 effects of operating conditions and environment on both maintenance and life of components; 4 trouble signals - their diagnosis and cure
The definitions and illustrations in this SAE Recommended Practice are intended to establish common nomenclature and terminology for automotive transmission one-way clutches
The scope of this SAE Information Report is limited to a lift crane mounted on a fixed or floating platform, lifting loads from a vessel alongside. The size of the vessel is assumed not to exceed that of a workboat as defined in 3.15
This document defines the criteria used for the selection and placement of landing gear shock strut upper and lower bearings (see Figure 1). Common problems associated with shock strut bearings are presented herein
The lane departure warning (LDW) system is a warning system that alerts drivers if they are drifting (or have drifted) out of their lane or from the roadway. This warning system is designed to reduce the likelihood of crashes resulting from unintentional lane departures (e.g., run-off-road, side collisions, etc.). This system will not take control of the vehicle; it will only let the driver know that he/she needs to steer back into the lane. An LDW is not a lane-change monitor, which addresses intentional lane changes, or a blind spot monitoring system, which warns of other vehicles in adjacent lanes. This informational report applies to original equipment manufacturer and aftermarket LDW systems for light-duty vehicles (gross vehicle weight rating of no more than 8500 pounds) on relatively straight roads with a radius of curvature of 500 m or more and under good weather conditions
This SAE Aerospace Information Report (AIR) describes the aspects of hydraulic system design and installation to minimize the effects of lightning. Techniques for effective electrical bonding, hydraulic system lightning protection, and lightning protection verification techniques are discussed
This document outlines the most common repairs used on landing gear components. It is not the intention of this AIR to replace overhaul/component maintenance or technical order manuals, but it can serve as a guide into their preparation. Refer to the applicable component drawings and specifications for surface finish, thickness, and repair processing requirements. This document may also be used as a guide to develop an MRB (Material Review Board) plan. The repairs in this document apply to components made of metallic alloys. These repairs are intended for new manufactured components and overhauled components, including original equipment manufacturer (OEM)/depot and in-service repairs. The extent of repair allowed for new components as opposed to in-service components is left to the cognizant engineering authorities. Reference could be made to this document when justifying repairs on landing gears. For repairs outside the scope of this document, a detailed justification is necessary
The intent of this AIR is twofold: (1) to present descriptive summary of aircraft nosewheel steering and centering systems, and (2) to provide a discussion of problems encountered and “lessons learned” by various airplane manufacturers and users. This document covers both military aircraft (land-based and ship-based) and commercial aircraft. It is intended that the document be continually updated as new aircraft and/or new “lessons learned” become available
Items per page:
50
1 – 50 of 2810