Technical Standards - SAE Mobilus
This SAE Aerospace Standard (AS) establishes the minimum requirements for ground-based aircraft deicing/anti-icing methods and procedures to ensure the safe operation of aircraft during icing conditions on the ground. This document does not specify the requirements for particular aircraft models. The application of the procedures specified in this document are intended to effectively remove and/or prevent the accumulation of frost, snow, slush, or ice contamination which can seriously affect the aerodynamic performance and/or the controllability of an aircraft. The principal method of treatment employed is the use of fluids qualified to AMS1424 (Type I fluid) and AMS1428 (Type II, III, and IV fluids). All guidelines referred to herein are applicable only in conjunction with the applicable documents. Due to aerodynamic and other concerns, the application of deicing/anti-icing fluids shall be carried out in compliance with engine and aircraft manufacturer’s recommendations.
This document specifies a universal method of measuring the thickness change of friction materials to determine the effects of temperature. The test applies to both disc and drum-type linings commonly used in hydraulic and air brake systems for automotive or commercial vehicle applications. This document describes several methods for thermal swell and growth. Method A is where the friction material is in contact with a heated surface to simulate the heat input to the pad that occurs during actual usage. Method B uses an oven to heat the freestanding material and is an approximate procedure requiring less instrumentation. Method A is recommended for disc brake pad assemblies, noise insulators, or flat coupons, while Method B is recommended for curved drum brake linings. This document also describes how to test the warmed-up disc brake pads and noise insulators for hot compressibility using Method A.
This SAE Aerospace Standard (AS) defines the requirements for saddle-type clamps. Tests and criteria noted do not indicate any specific areas of application or usage. Supplemental testing may be necessary to determine suitability for specific environments and applications.
SAE J1979/ISO 15031-5 set includes the communication between the vehicle’s OBD systems and test equipment implemented across vehicles within the scope of the legislated emissions-related OBD. To achieve this, it is based on the Open Systems Interconnection (OSI) Basic Reference Model in accordance with ISO/IEC 7498-1 and ISO/IEC 10731, which structures communication systems into seven layers. When mapped on this model, the services specified are broken into: — Diagnostic services (layer 7), specified in: — ISO 15031-5/SAE J1979 (emissions-related OBD), — ISO 27145-3 (WWH-OBD), — Presentation layer (layer 6), specified in: — ISO 15031-2, SAE J1930-DA, — ISO 15031-5, SAE J1979-DA, — ISO 15031-6, SAE J2012-DA, — ISO 27145-2, SAE J2012-DA, — Session layer services (layer 5), specified in: — ISO 14229-2 supports ISO 15765-4 DoCAN and ISO 14230-4 DoK-Line protocols, — ISO 14229-2 is not applicable to the SAE J1850 and ISO 9141-2 protocols, — Transport layer services (layer 4), specified in
This SAE Aerospace Standard (AS) defines minimum performance standards, qualification requirements, and minimum documentation requirements for passenger and crew seats in civil rotorcraft, transport aircraft, and general aviation aircraft. The goal is to achieve comfort, durability, and occupant protection under normal operational loads and to define test and evaluation criteria to demonstrate occupant protection when a seat/occupant/restraint system is subjected to statically applied ultimate loads and to dynamic impact test conditions set forth in Title 14, Code of Federal Regulations (14 CFR) parts 23, 25, 27, or 29 (as applicable to the seat type). Two formats of this standard (MS Excel and Adobe PDF) are available. The standards provided in both formats (MS Excel and Adobe PDF) contain the same text.
This SAE Standard provides testing and functional requirements to meet specified minimum performance criteria for electronic probe-type leak detectors, so they will identify smaller refrigerant leaks when servicing all motor vehicle air conditioning systems, including those engineered with improved sealing and smaller refrigerant charges to address environmental concerns and increase system efficiency. This document does not address any safety issues concerning their design or use.
This SAE Aerospace Standard (AS) provides requirements for design and installation of aircraft jacking pad adapters and the mating jack socket interface to permit use of standard jacking equipment to be used in civil and military transport aircraft. The adapter defined herein shall be the key interface between the aircraft and the aircraft jack(s).
This SAE Aerospace Standard (AS) covers the requirements for polytetrafluoroethylene (PTFE) hose assemblies for use in aerospace fuel and lubricating oil systems at temperatures between -67 and 450 °F and at operating pressures per Table 1. The hose assemblies are also suitable for use within the same temperature and pressure limitations in aerospace pneumatic systems, where some gaseous diffusion through the wall of the PTFE liner can be tolerated. Standard hose assembly configurations are defined in AS7051 through AS7056. The use of these hose assemblies in pneumatic storage systems is not recommended. In addition, installations in which the limits specified herein are exceeded, or in which the application is not covered specifically by this document, for example oxygen, shall be subject to the approval of the purchaser.
This SAE Recommended Practice is intended as a guide toward standard practice and is subject to change to keep pace with experience and technical advances. This document provides standardized laboratory tests, test methods and equipment, and requirements for lighting devices covered by SAE Recommended Practices and Standards. It is intended for devices used on vehicles less than 2032 mm in width. Tests for vehicles larger than 2032 mm in overall width are covered in SAE J2139. Device-specific tests and requirements can be found in applicable SAE Technical Reports.
This standard provides an overview of results and requirements needed to remove refrigerant from a mobile air-conditioning system for determining refrigerant emissions (leakage). This reclaim procedure for use on fleet vehicles in a field service environment should produce an accuracy and repeatability sufficient to determine refrigerant loss within 2 g.
This SAE Standard outlines the requirements for a preformed thermosetting hose intended for use in heavy-duty vehicle engines, such as air cleaner inlet, crank case vent, or air cleaner to turbo or to engine inlet.
This Aerospace Standard (AS) defines the requirements for a heavy duty polytetrafluoroethylene (PTFE) lined, metallic reinforced, hose assembly suitable for use in 400 °F 5000 psi, aircraft and missile hydraulic fluid systems.
This SAE Aerospace Standard (AS) defines the requirements for a lightweight polytetrafluoroethylene (PTFE) lined, metallic reinforced, hose assembly suitable for use in high temperature, 400 °F, high pressure, 3000 psi, aircraft hydraulic systems, also for use in pneumatic systems which allow some gaseous diffusion through the PTFE wall.
This SAE Aerospace Standard (AS) establishes minimum requirements for eddy current inspection of circular holes in nonferrous, metallic, low conductivity (less than 5% IACS) aircraft engine hardware with fasteners removed. The inspection is intended to be performed at maintenance and overhaul facilities on engine run hardware.
This standard is applicable to the marking of aerospace vehicle electrical wires and cables using ultraviolet (UV) lasers. This standard specifies the process requirements for the implementation of UV laser marking of aerospace electrical wire and cable and fiber-optic cable to achieve an acceptable quality mark using equipment designed for UV laser marking of identification codes on aerospace wire and cable. Wiring specified as UV laser markable subject to AS4373 and which has been marked in accordance with this standard will conform to the requirements of AS50881.
Items per page:
50
1 – 50 of 19209