Recommended Practices - SAE Mobilus
This SAE Aerospace Recommended Practice (ARP) provides guidance for substantiating the airworthiness of aircraft engine components. Generally, these components are associated with the engine control system, the system or systems that allow the engine to provide thrust or power as demanded by the pilot of the aircraft while also ensuring the engine operates within acceptable operating limits. But these components may also include hardware and systems associated with engine lubrication, engine or aircraft hydraulic or electrical systems, aircraft environmental control systems, thrust reverser control, or similar aircraft or engine propulsion system functions. This paper develops the concept of using a standardized 26-item checklist of environmental conditions for evaluating aircraft engine component airworthiness. This approach is compatible with current practices used in the industry and has been accepted by engine certification authorities in conjunction with other guidance as
This SAE Recommended Practice (RP) describes a test method for determination of heavy truck (Class VI, VII, and VIII) tire force and moment properties under straight-line braking conditions. The properties are acquired as functions of normal force and slip ratio using a sequence specified in this practice. At each normal force increment, the slip ratio is continually changed by application of a braking torque ramp. The data are suitable for use in vehicle dynamics modeling, comparative evaluations for research and development purposes, and manufacturing quality control. This document is intended to be a general guideline for testing on an ideal machine. Users of this RP may modify the recommended protocols to satisfy the needs of specific use-cases; e.g., reducing the recommended number of test loads and/or pressures for benchmarking purposes. However, due care is necessary when modifying the protocols to maintain data integrity.
This document provides user information on best practice methods and processes for the in-service inspection, evaluation, and cleaning of expanded beam (EB) fiber optic interconnect components (termini, alignment sleeves, and connectors), test equipment, and test leads based on the information provided in AIR6031 and ARP6283. This document provides the user with a decision-making tool to determine if the fiber optic components are acceptable for operation with EB fiber optic termini.
This document establishes training guidelines applicable to fiber optic safety training, technical training and fiber awareness for individuals involved in the manufacturing, installation, support, integration and testing of fiber optic systems. Applicable personnel include: Managers Engineers Technicians Logisticians Trainers/Instructors Third Party Maintenance Agencies Quality Assurance Shipping Receiving Production Purchasing
This document establishes training guidelines applicable to fiber optic safety training, technical training and fiber awareness for individuals involved in the manufacturing, installation, support, integration and testing of fiber optic systems. Applicable personnel include: Managers Engineers Technicians Logisticians Trainers/Instructors Third Party Maintenance Agencies Quality Assurance Shipping Receiving Production Purchasing
This SAE Standard covers motor vehicle brake fluids of the nonpetroleum type, based upon glycols, glycol ethers, borates of glycol ethers, and appropriate inhibitors, for use in the braking system of any motor vehicle, such as a passenger car, truck, bus, or trailer. These fluids are not intended for use under arctic conditions. These fluids are designed for use in braking systems fitted with rubber cups and seals made from styrene-butadiene rubber (SBR) or a terpolymer of ethylene, propylene, and a diene (EPDM).
This SAE Recommended Practice is intended to serve as a guide for standardization of features, dimensions, and configurations of balance weights for aluminum and steel wheels intended for use on passenger cars, light trucks, and multipurpose vehicles to assure good installation and retention of the balance weight. This document also provides test procedures and minimum performance requirements for testing balance weight retention.
This document establishes re-certification guidelines applicable to fiber optic fabricator technical training for individuals involved in the manufacturing, installation, support, integration and testing of fiber optic systems. Applicable personnel include: Managers Engineers Technicians Trainers/Instructors Third Party Maintenance Agencies Quality Assurance Production
This document establishes training guidelines applicable to fiber optic fabricator technical training for individuals involved in the manufacturing, installation, support, integration and testing of fiber optic systems. Applicable personnel include: Managers Engineers Technicians Trainers/Instructors Third Party Maintenance Agencies Quality Assurance Production
This document establishes training guidelines applicable to fiber optic fabricator technical training for individuals involved in the manufacturing, installation, support, integration and testing of fiber optic systems. Applicable personnel include: Managers Engineers Technicians Trainers/Instructors Third Party Maintenance Agencies Quality Assurance Production
This document specified the main dimensions and tolerances which affect interchangeability between end yoke earwork for the most common North American-used universal joints. Dimensions and tolerances of the mating universal joints are left to the discretion of the universal joint manufacturers. The term “earwork” refers to the configuration and geometry defining end yoke connections directly provided for universal joint cross attachment of drivelines. Earwork for certain styles of universal joint connections and flange connections have for a long time been proprietary to certain manufacturers. Over years of usage, proprietary rights have expired and the industry, as a whole, has used these earworks as standard. In an effort to tabulate some of the long-established practices, the following SAE Recommended Practice has been compiled. Manufacturers do from time to time, as the need arises, change tolerances or fits to better enhance component performance. This document has been prepared
This SAE Recommended Practice provides uniform laboratory procedures for fatigue testing of wheels for demountable rims and hubs intended for normal highway use on trucks, buses, truck trailers, and multipurpose passenger vehicles. The hubs included have bolt circle diameters ranging from 165.1 to 335.0 mm (6.500 to 13.189 inches). It is up to each hub and/or wheel for demountable rims manufacturer to determine the appropriate test method, accelerated load factor and cycle life requirements applicable to obtain satisfactory service life for a given application. When deviations from the procedures recommended herein are made, it is the responsibility of the hub and/or wheel for demountable rims developer to modify other parameters as necessary to ensure satisfactory service life for the intended application. It should be noted that this test procedure focuses on fatigue resulting from vehicle loading and cornering forces. It does not consider loads imparted to the hub from braking
This SAE Aerospace Recommended Practice (ARP) provides guidance for the presentation of gas turbine engine transient performance models with the capacity to be implemented as computer programs operating in real time and is intended to complement AS681. Such models will be used in those applications where a transient program must interface with physical systems. These applications are characterized by the requirement for real time transient response. These models require attention to unique characteristics that are beyond the scope of AS681. This document is intended to facilitate the development of mathematical models and the coordination of their requirements with the user. It will not unduly restrict the modeling methodology used by the supplier. The objective of this document is to define a recommended practice for the delivery of mathematical models intended for real time use. Models used in this application may also be contained in deliverable computer programs covered by AS681.
This SAE Recommended Practice covers the most common applications of electronically controlled on-demand clutch systems used in passenger (car and light truck) vehicle applications. This practice is applicable for torque modulation devices used in transfer cases, electronic limited slip differential (eLSD) cross-axle devices, rear drive module (RDM) integrated torque transfer devices with or without disconnect capability, and other related torque transfer devices.
This terminology document is intended to provide a common nomenclature for use in publishing road vehicle aerodynamics data and reports.
The intent of the SAE Aerospace Recommended Practice (ARP) is to provide a process for users to identify the part number of AS7928 terminal lugs installed in civilian or military applications, although it can also be used to identify terminals that have been stored incorrectly. This ARP is subject to change to keep pace with experience and technical advances of AS7928 terminals. A current set of tables are provided to list and identify current AS7928 terminal lug configurations per the associated specification detail sheet and terminal lug configuration. Specific configuration details, graphic, size, and marking information for each individual terminal lug is provided to assist the product user with accurate selection for replacement or identification.
This SAE Recommended Practice provides test procedures, performance requirements, and guidelines for cargo lamps intended for use on vehicles under 5443 kg (12000 pounds) Gross Vehicle Weight Rating (GVWR).
This SAE Recommended Practice describes the classification of off-road tires and rims designed specifically for forestry machines (refer to SAE J1116), defines related terminology in common use, and shows representative construction details of component parts.
This document is intended to define the standardized Diagnostic Trouble Codes (DTCs) that On-Board Diagnostic (OBD) systems in vehicles are required to report when malfunctions are detected. SAE J2012 may also be used for decoding of enhanced diagnostic DTCs and specifies the ranges reserved for vehicle manufacturer specific usage.
This SAE Aerospace Recommended Practice (ARP) provides recommended practices for the cleaning of aircraft oxygen equipment, both metallic and non-metallic articles, such as oxygen lines (tubes, hoses, etc.), components (including regulator and valve parts), cylinders, and ground-based equipment that may be used to support aircraft oxygen systems. This document also specifies work area details, methods for selecting suitable cleaning agents, cleaning methods, and test methods for verifying levels of cleanliness. The cleanliness coding scheme specified in this document provides a method for documenting minimum cleanliness level requirements and for identifying compliance.
This RP specifies a dynamometer test procedure to characterize wear rates of automotive service brake linings (brake shoes) and disc brake pads.
This SAE Aerospace Recommended Practice (ARP) covers procedures or methods to be used for fabricating, handling, testing, and installation of oxygen lines in an aircraft oxygen system.
This recommended practice (RP) is applicable to the construction, reconstruction, and modification of ready-mixed concrete trucks. This RP is not mandatory but is a consensus of industry best practices. It is not intended to override or replace OEM vehicle specifications, existing government regulations, and other sources that are related to this RP.
This SAE Recommended Practice establishes the communication for the variety of potential functions for plug-in electric vehicle (PEV) customers. This includes features for use case items in SAE J2836/3 that may be PEV/customer optional equipment, such as AC vehicle-to-load (V2L) and AC vehicle-to-vehicle systems. These systems conform to SAE J1772 with variations required to identify to the PEV bidirectional onboard charger (OBC) the mode of operation changes and output requirements. SAE has published multiple documents relating to PEV and vehicle-to-grid (V2G) interfaces. The various document series are listed below, with a brief explanation of each. Figure 1 shows the sequencing of these documents and their primary function (e.g., the SAE J2836 and SAE J2847/1 documents start with smart charging, SAE J2836 and SAE J2847/2 then add DC charging, etc.). The intent is to have subsequent slash sheets complement each other as more functions and features are included. The /6 series of
This SAE Recommended Practice is intended as the definition of a standard test, which may be subject to frequent change to keep pace with experience and technical advances. This should be kept in mind when considering its use. The SAE No. 2 Friction Test Machine is used to evaluate the friction characteristics of automatic transmission plate clutches with automotive transmission fluids. It can also be used to conduct durability tests on wet friction systems. The specific purpose of this document is to define a µPVT Test for the evaluation of the variation of wet friction system performance as a function of speed, temperature, and pressure. This procedure is intended as a standard for both suppliers and end users. The only variables selected by the supplier or user of the friction system are: a Friction material b Fluid c Reaction plates These three variables must be clearly identified when reporting the results of this test. If any of the test parameters or system hardware as described
This SAE Recommended Practice establishes uniform procedures for testing BEVs that are capable of being operated on public and private roads. The procedure applies only to vehicles using batteries as their sole source of power. It is the intent of this document to provide standard tests that will allow for the determination of energy consumption and range for light-duty vehicles (LDVs) based on the federal test procedure (FTP) using the urban dynamometer driving cycle (UDDS) and the highway fuel economy driving schedule (HFEDS) and provide a flexible testing methodology that is capable of accommodating additional test cycles as needed. Additionally, this SAE Recommended Practice provides five-cycle testing guidelines for vehicles performing supplementary testing on the US06, SC03, and cold FTP procedures. Realistic alternatives should be allowed for new technology. Evaluations are based on the total vehicle system’s performance and not on subsystems apart from the vehicle.
This ARP provides definitions and background information regarding the physical performance and testing of DDVs. This ARP also provides extensive guidance for the preparation of procurement specifications and functional testing.
This document describes a process that may be used to perform the ongoing safety assessment for (1) GAR aircraft and components (hereafter, “aircraft”), and (2) commercial operators of GAR aircraft. The process described herein is intended to support an overall safety management program. It is associated with showing compliance with regulations and also establishing and meeting internal company safety standards. The process described herein identifies a systematic means, but not the only means, to assess continuing airworthiness. Ongoing safety management is an activity dedicated to assuring that risk is identified and properly eliminated or controlled. The safety management process includes both safety assessment and economic decision-making. While economic decision-making (factors related to scheduling, parts, and cost) is an integral part of the safety management process, this document addresses only the ongoing safety assessment process. This ongoing safety assessment process
This SAE Recommended Practice defines a clearance line for establishing dimensional compatibility between drum brakes and wheels with 19.5-inch, 22.5-inch, and 24.5-inch diameter rims. Wheels designed for use with drum brakes may not be suitable for disc brake applications. The lines provided establish the maximum envelope for brakes, including all clearances, and minimum envelope for complete wheels to allow for interchangeability. This document addresses the dimensional characteristics only and makes no reference to the performance, operational dynamic deflections, or heat dissipation of the system. Valve clearances have not been included in the fitment lines. Bent valves may be required to clear brake drums. Disc brake applications may require additional running clearances beyond those provided by the minimum contour lines. Mounting systems as noted are referenced in SAE J694.
This SAE Aerospace Recommended Practice (ARP) describes training and approval of personnel performing certain thermal processing and associated operations that could have a material impact on the properties of materials being processed. It also recommends that only approved personnel perform or monitor the functions listed in Table 1.
Since the torque converter and fluid coupling are commonly used components of automatic transmissions in industry, SAE appointed a committee to standardize terminology, test procedures, data recording, design symbols, and so forth in this field. The following committee recommendations will facilitate a clear understanding for engineering discussions, comparisons, and the preparation of technical papers. The recommended usages represent the predominant practice or the acceptable practice. Where agreement is not complete, alternates have been included for clarification. This SAE Recommended Practice deals only with the physical parts and dimensions and does not attempt to standardize the design considerations, such as the actual fluid flow angle resulting from the physical blade shape.
This SAE Recommended Practice is applicable to all liquid-to-air, liquid-to-liquid, air-to-liquid, and air-to-air heat exchangers used in vehicle and industrial cooling systems.
This SAE Aerospace Recommended Practice (ARP) contains methods used to measure the optical performance of airborne electronic flat panel display (FPD) systems. The methods described are specific to the direct view, liquid crystal matrix (x-y addressable) display technology used on aircraft flight decks. The focus of this document is on active matrix, liquid crystal displays (LCD). The majority of the procedures can be applied to other display technologies, however, it is cautioned that some techniques need to be tailored to different display technologies. The document covers monochrome and color LCD operation in the transmissive mode within the visual spectrum (the wavelength range of 380 to 780 nm). These procedures are adaptable to reflective and transflective displays paying special attention to the source illumination geometry. Photometric and colorimetric measurement procedures for airborne direct view CRT (cathode ray tube) displays are found in ARP1782. Optical measurement
This SAE Recommended Practice establishes the procedure for determining if recreational motorboats have effective exhaust muffling means when operating in the stationary mode. It is intended as a guide toward standard practice and is subject to change to keep pace with experience and technical advances.
This SAE Aerospace Recommended Practice (ARP) discusses the desired characteristics of night vision goggle (NVG) filters that can be used with incandescent, electroluminescent (EL) and light emitting diode (LED) light sources to achieve NVG compatible lighting of aerospace crew stations. This document also discusses the parameters that need to be considered when selecting a night vision goggle/daylight viewing (NVG/DV) filter for proper contrast enhancement to achieve readability in daylight. The recommendations set forth in this document are to aid in the design of NVG compatible lighting that will meet the requirements of MIL-L-85762A and MIL-STD-3009.
This SAE Recommended Practice establishes the procedure for measuring the sound level of recreational motorboats in the vicinity of a shore bordering any recreational boating area during which time a boat is operating under conditions other than stationary mode operation. It is intended as a guide toward standard practice and is subject to change to keep pace with experience and technical advances.
This SAE Recommended Practice specifies an intrusion resistance test method for glazing systems installed in motor vehicles. Intrusion resistance performance is determined not solely by the glazing but also by the glazing attachment to the vehicle and by the vehicle structure. Therefore, the glazing/attachment/vehicle structure must be tested as a single unit. This test determines intrusion resistance only. The test applies to those materials that meet the requirements for use as safety glazing materials as specified in ANSI/SAE Z26.1 or other applicable standards. The test applies to all installation locations.
To provide standard terminology and definitions with regard to ignition systems for spark-ignited internal combustion engines.
This SAE Aerospace Recommended Practice (ARP) provides criteria for design and location of power supplies, controls, light fixtures, and associated equipment which are used to provide emergency illumination in transport aircraft, designed to comply with 14 CFR Part 25 (see Reference 1) for operation under 14 CFR Part 91 (see Reference 11) and 14 CFR Part 121 (see Reference 2), and also in compliance with FAA Advisory Circulars AC 25.812-1A (see Reference 3) and AC 25.812-2 (see Reference 10). It is not the purpose of an ARP to specify design methods to be followed in the accomplishment of the stated objectives.
The scope of this document is to provide the design specifications/requirements/guidelines for concrete curb surrogates that represent actual concrete curbs to the in-vehicle sensors and can be used for performance assessment of such in-vehicle sensing systems in real-world test scenarios/conditions. Therefore, this document only includes the recommended concrete curb surrogate characteristics for automotive cameras, LiDARs, and/or radars. This document is focused only on the concrete curb and not on the asphalt curb, which is not common.
Items per page:
50
1 – 50 of 7411