Recommended Practices - SAE Mobilus
The present document addresses gas and hydraulic fluid servicing required on commercial and military aircraft landing gears, for both single and dual chamber (also known as dual stage and two stage) shock struts. This document should be considered as landing gear industry recommended practice but in no way is meant to supersede the shock strut OEM’s published procedures.
A tested method of data presentation and use is described herein. The method shown is a useful guide, to be used with care and to be improved with use.
This SAE Aerospace Recommended Practice (ARP) provides recommendations on cavity design, the installation of elastomer type spare seals in these cavities, and information surrounding elastomer material properties after contact with typical shock absorber hydraulic fluid(s) or grease. This ARP is primarily concerned with the use of spare seals on shock absorbers where only a single dynamic seal is fitted and in contact with the slider/shock absorber piston at any one time. These shock absorbers typically have a spare (dynamic) seal gland located on the outer diameter of the lower seal carrier. This spare seal gland is intended to house a spare elastomer contact seal. Split Polytetrafluoroethylene (PTFE) backup rings can also be installed in the spare seal cavity. During operation, if the fitted dynamic shock absorber standard seal begins to fail/leak, then the aircraft can be jacked up, allowing the lower gland nut of the shock absorber to be dropped down. The current used dynamic seal
This SAE Recommended Practice provides the lighting function identification codes for use on all passenger vehicles, trucks, trailers, motorcycles, and emergency vehicles.
Primarily to provide recommendations concerning minimizing stress-corrosion cracking in wrought titanium alloy products.
This document is intended to describe how to conduct lightning direct effects tests and indirect system upset effects tests. Indirect effects upset and damage tolerance tests for individual equipment items are addressed in RTCA DO-160/ED-14. Documents relating to other aspects of the certification process, including definition of the lightning environment, zoning, and indirect effects certification, are listed in Section 2. This document presents test techniques for simulated lightning testing of aircraft and the associated systems. This document does not include design criteria, nor does it specify which items should or should not be tested. Acceptable levels of damage and/or pass/fail criteria for the qualification tests must be approved by the appropriate airworthiness authority for each particular case. When lightning tests are a part of a certification plan, the test methods described herein are an acceptable means, but not the only means, of meeting the test requirements of the
This SAE Recommended Practice provides standardized laboratory tests, test methods, and performance requirements applicable to signal and marking devices used on vehicles 2032 mm or more in overall width.
This document applies primarily to mobile cranes that lift loads by means of a drum and hoist line mechanism. It can be used to determine the hoist line speed and power of other hoist line mechanisms if the load can be held constant and hoist line travel distance is sufficient for the accuracy of the line speed measurements prescribed. This recommended practice applies to all mechanical, hydraulic, and electric powered hoist mechanisms.
This SAE Aerospace Recommended Practice (ARP) provides methods and guidelines for isolating dissimilar repair patch materials from carbon fiber reinforced plastic (herein also referred to as carbon composite) structure during a repair operation.
This recommended practice covers the attachment of bonded anti-noise brake pad shims only. Mechanically attached shims (those without bonding) are not covered by this procedure.
This test procedure defines a laboratory procedure for generating and evaluating filiform corrosion on painted aluminum wheels and painted aluminum wheel trim. While this test was developed specifically for the testing of painted aluminum wheels and wheel trim, it may be applicable to other components. The application owner will need to assess if this test generates filiform similar to that found in the relevant usage to ensure it will provide accurate data for the application.
This SAE Standard covers fittings, couplers, and hoses intended for connecting service hoses from mobile air-conditioning systems to service equipment such as charging, recovery, and recycling equipment (see Figure 1). This specification covers service hose fittings and couplers for MAC service equipment service hoses, per SAE J2843 and SAE J2851, from mobile air-conditioning systems to service equipment such as manifold gauges, vacuum pumps, and air-conditioning charging, recovery, and recycling equipment.
This SAE Recommended Practice establishes testing methods and performance requirements for windshield wiping systems on trucks, buses, and multipurpose passenger vehicles with a GVWR of 4500 kg (10000 pounds) or greater and light-duty utility vehicles with a GVWR of less than 4500 kg (10000 pounds). The test procedures and minimum performance requirements outlined in this document are based on currently available engineering data. It is the intent that all portions of the document will be periodically reviewed and revised as additional data regarding windshield wiping system performance are developed.
This technical report provides a taxonomy and classification of powered micromobility vehicles. These vehicles may be privately owned or be available via shared- or rental-fleet operations. This technical report does not provide specifications or otherwise impose minimum safety design requirements for powered micromobility vehicles.
This SAE Recommended Practice describes the classification of off-road tires and rims for use on earthmoving machines (refer to SAE J1116), defines related terminology in common use, and shows representative construction details of component parts.
This SAE Recommended Practice establishes uniform test procedures and performance requirements for the defrosting system of enclosed cab trucks, buses, and multipurpose vehicles. It is limited to a test that can be conducted on uniform test equipment in commercially available laboratory facilities. For laboratory evaluation of defroster systems, current engineering practice prescribes that an ice coating of known thickness be applied to the windshield and left- and right-hand side windows to provide more uniform and repeatable test results, even though - under actual conditions - such a coating would necessarily be scraped off before driving. The test condition, therefore, represents a more severe condition than the actual condition, where the defroster system must merely be capable of maintaining a cleared viewing area. Because of the special nature of the operation of most of these vehicles (where vehicles are generally kept in a garage or warmed up before driving), and since
The purpose of this ARP is to provide the sample selection criteria and endurance time test procedures for SAE Type I aircraft deicing/anti-icing fluids required for the generation of endurance time data of acceptable quality for review by the SAE G-12 Holdover Time Committee. A significant body of previous research and testing has indicated that all Type I fluids formulated with conventional glycols, as defined in 3.1.1 of AMS1424, perform in a similar manner from an endurance time perspective. This applies to Type I deicing/anti-icing fluids formulated with propylene glycol, ethylene glycol, and diethylene glycol only. As a result, Type I deicing/anti-icing fluids containing these glycol bases no longer require testing for endurance times. The methods described in this ARP shall be employed, however, if endurance time testing of a conventional glycol-based Type I deicing/anti-icing fluid is desired or requested by a fluid manufacturer, operator, or other organization. Fluids
This SAE Recommended Practice covers the design and application of a 120 VAC single phase engine based auxiliary power unit or GENSET. This document is intended to provide design direction for the single phase nominal 120 VAC as it interfaces within the truck 12 VDC battery and electrical architecture providing power to truck sleeper cab hotel loads so that they may operate with the main propulsion engine turned off.
This SAE Recommended Practice covers passive torque biasing axle and center differentials used in passenger car and light truck applications. Differentials are of the bevel gear, helical gear, and planetary types, although other configurations are possible.
This SAE Recommended Practice establishes a uniform, powered vehicle test procedure and minimum performance requirement for lane departure warning systems used in highway trucks and buses greater than 4546 kg (10000 pounds) gross vehicle weight (GVW). Systems similar in function but different in scope and complexity, including lane keeping/lane assist and merge assist, are not included in this document. This document does not apply to trailers, dollies, etc. This document does not intend to exclude any particular system or sensor technology. This document will test the functionality of the lane departure warning system (LDWS) (e.g., ability to detect lane presence and ability to detect an unintended lane departure), its ability to indicate LDWS engagement, its ability to indicate LDWS disengagement, and its ability to determine the point at which the LDWS notifies the human machine interface (HMI) or vehicle control system that a lane departure event is detected. Moreover, this
This SAE Recommended Practice establishes recommended procedures for the issuance, assignment, and structure of Identification Numbers on a uniform basis by states or provinces for use in an Assigned Identification Number (AIN).
This SAE Recommended Practice establishes a procedure for the issuance and assignment of a World Manufacturer Identifier (WMI) on a uniform basis to vehicle manufacturers that may desire to incorporate it in their Vehicle Identification Numbers (VIN). This recommended practice is intended to be used in conjunction with the recommendations for VIN systems described in SAE J853, SAE J187, SAE J272, and other SAE reports for VIN systems. These procedures were developed to assist in identifying the vehicle as to its point of origin. It was felt that review and coordination of the WMI by a single organization would avoid duplication of manufacturer identifiers and assist in the identification of vehicles by agencies such as those concerned with motor vehicle titling and registration, law enforcement, and theft recovery.
This document includes requirements of installations of adequate landing and taxiing lighting systems in aircraft of the following categories: a Single engine personal and/or liaison type b Light twin engine c Large multiengine propeller d Large multiengine turbojet/turbofan e Military high-performance fighter and attack f Helicopter This document will cover general requirements and recommended practices for all types of landing and taxi lights. More specific recommendations for LED lights in particular can be found in ARP6402.
This SAE Aerospace Recommended Practice (ARP) provides recommended practices for the calibration and acceptance of icing wind tunnels to be used in testing of aircraft components and systems and for the development of simulated ice shapes. This document is not directly applicable to air-breathing propulsion test facilities configured for the purposes of engine icing tests, which are covered in AIR6189. This document also does not provide recommended practices for creating Supercooled Large Drop (SLD) or ice crystal conditions, since information on these conditions is not sufficiently mature for a recommended practice document at the time of publication of ARP5905A. Use of facilities as part of an aircraft’s ice protection Certification Plan should be reviewed and accepted by the applicable regulatory agency prior to testing. Following acceptance of a test plan, data generated in these facilities may be submitted to regulatory agencies for use in the certification of aircraft ice
This SAE Recommended Practice describes the basic content requirements, barcode specifications, and functional test specifications of the vehicle identification number (VIN) label. On the vehicle, the VIN label is to be mounted in a readily accessible location for use of a barcode scanning device.
This SAE Recommended Practice applies to off-road, self-propelled work machine categories of earthmoving, forestry, road building and maintenance, and specialized mining machinery as defined in SAE J1116.,
This SAE Standard establishes the test procedures, performance requirements, and criteria necessary to evaluate minimum safety and reliability requirements of a children’s snowmobile as identified in 1.2.
Instructions on this chart are intended to be used as a ready reference by personnel responsible for servicing off-road self-propelled work machines described in SAE J1116, categories 1, 2, 3, and 4. Detailed maintenance and service guidelines are reserved for maintenance, operator, and lubrication manuals as defined in SAE J920.
This SAE Aerospace Recommended Practice (ARP) establishes a method for evaluating the particulate matter extracted from the working fluid of a hydraulic system or component using a membrane. The amount of particulate matter deposited on the membrane due to filtering a given quantity of fluid is visually compared against a standard membrane in order to provide an indication of the cleanliness level of the fluid.
This document presents minimum criteria for the design and installation of LED assemblies in aircraft. The use of "shall" in this specification expresses provisions that are binding. Nonmandatory provisions use the term "should."
This SAE Aerospace Recommended Practice (ARP) provides an algorithm aimed to analyze flight control surface actuator movements with the objective to generate duty cycle data applicable to hydraulic actuator dynamic seals.
This document presents a catalog of safety sign text and artwork that can be used by any ready mixed concrete truck manufacturer to warn of common hazards.
This SAE Recommended Practice provides performance, sampling, certifying requirements, test procedures, and marking requirements for aftermarket wheels intended for normal highway use on passenger cars, light trucks, and multipurpose passenger vehicles. For aftermarket wheels on trailers drawn by passenger cars, light trucks, or multipurpose vehicles, refer to SAE J1204. These performance requirements apply only to wheels made of materials included in Tables 1 and 2. For wheels using composite material, refer to SAE J3204. New nomenclature and terms are added to clarify wheel constructions typically not used in OEM applications. The testing procedures and requirements are based on SAE standards listed in the references.
This SAE Recommended Practice describes the test procedures for conducting dynamic frontal strength test for COE and other heavy trucks with forward controls. Its purpose is to establish recommended test procedures which will standardize the procedure for heavy trucks. Descriptions of the test setup, test instrumentation, photographic/video coverage, and the test fixtures are included.
This SAE Recommended Practice describes the method for safe deployment of airbag modules in vehicles equipped with electrically actuated airbag systems for the purpose of disposal. It is intended to provide a procedure that does not require significant technical expertise, is easy to operate, and is readily available to be used by automobile dismantlers or vehicle shredders to deploy airbag modules prior to automobile reclamation.
The purpose of this SAE Recommended Practice is to establish guidelines for the automatic transmission and hydraulic systems engineer to design rectangular cross section seals for rotating and static grooved shaft applications. Also included are property comparisons of polymeric materials suitable for these applications. Historically, material covered in this document is not intended to include aluminum contact applications.
This Recommended Practice provides procedures for defining the Accelerator Heel Point and the Accommodation Tool Reference Point, a point on the seat H-point travel path which is used for locating various driver workspace accommodation tools in Class B vehicles (heavy trucks and buses). Three accommodation tool reference points are available depending on the percentages of males and females in the expected driver population (50:50, 75:25, and 90:10 to 95:5). These procedures are applicable to both the SAE J826 HPM and the SAE J4002 HPM-II.
This SAE Recommended Practice establishes three alternate methods for describing and evaluating the truck driver's viewing environment: the Target Evaluation, the Polar Plot and the Horizontal Planar Projection. The Target Evaluation describes the field of view volume around a vehicle, allowing for ray projections, or other geometrically accurate simulations, that demonstrate areas visible or non-visible to the driver. The Target Evaluation method may also be conducted manually, with appropriate physical layouts, in lieu of CAD methods. The Polar Plot presents the entire available field of view in an angular format, onto which items of interest may be plotted, whereas the Horizontal Planar Projection presents the field of view at a given elevation chosen for evaluation. These methods are based on the Three Dimensional Reference System described in SAE J182a. This document relates to the driver's exterior visibility environment and was developed for the heavy truck industry (Class B
This SAE Recommended Practice establishes uniform cold weather test procedures and performance requirements for engine coolant type heating systems of bus that are all vehicles designed to transport 10 or more passengers. The intent is to provide a test that will ensure acceptable comfort for bus occupants. It is limited to a test that can be conducted on uniform test equipment in commercially available laboratory facilities. Required test equipment, facilities, and definitions are included. There are two options for producing hot coolant in this recommended practice. Testing using these two approaches on the same vehicle will not necessarily provide identical results. Many vehicle models are offered with optional engines, and each engine has varying coolant temperatures and flow rates. If the test is being conducted to compare the performance of one heater design to another heater design, then the external coolant source approach (Test A) will yield the most comparable results. If the
The purpose of this SAE Recommended Practice is to establish uniform test procedures for measuring and rating air delivery and cooling capacity of truck and off-road self-propelled work machines used in earth moving, agriculture, and forestry air-conditioner evaporator assemblies. It is the intent to measure only the actual cooling capacity of the evaporator. It is not the intent of this document to rate and compare the performance of the total vehicle air-conditioning system.
This SAE Recommended Practice describes two-dimensional 95th percentile truck driver side view, seated stomach contours for horizontally adjustable seats (see Figure 1). There is one contour and three locating lines to accommodate male-to-female ratios of 50:50, 75:25, and 90:10 to 95:5.
This Recommended Practice provides a procedure to locate driver seat tracks, establish seat track length, and define the SgRP in Class B vehicles (heavy trucks and buses). Three sets of equations that describe where drivers position horizontally adjustable seats are available for use in Class B vehicles depending on the percentages of males to females in the expected driver population (50:50, 75:25, and 90:10 to 95:5). The equations can also be used as a checking tool to estimate the level of accommodation provided by a given length of horizontally adjustable seat track. These procedures are applicable for both the SAE J826 HPM and the SAE J4002 HPM-II.
Items per page:
50
1 – 50 of 7326