Analysis of Lateral Stability and Ride of an Indian Railway Constrained Dual-Axle Bogie Frame

Authors Abstract
This article investigates the lateral dynamic behavior of a two-wheel axle bogie frame of an Indian railway vehicle. The influence of the different parameters of the vehicle on stability is investigated. The model is formulated by assigning 10 degrees of freedom (DoF) to the system with yaw and lateral DoF assigned to the bogie frame and vertical, lateral, roll, and yaw DoF assigned to each wheel axle. Linear creep force and moments suggested by Kalker’s linear theory of creep have been accounted for in the analysis. The stability analysis is carried out by transforming the second-order differential equations into first-order differential equations using state-space representation. The present model is validated by comparing the eigenvalues of the analytical model with the same obtained from the finite element (FE) model. The results obtained from the analytical and FE model are in good agreement. The present model is also validated by correlating the lateral acceleration in the bogie frame obtained from simulation and experimental testing. For this purpose, the system is subjected to random vertical and lateral inputs, and these inputs are experimentally measured and modeled using a track recording car (TRC). The experimental and simulated results are correlated well and the model is justified.
Meta TagsDetails
Sharma, R., Gopala Rao, L., Sharma, S., Palli, S. et al., "Analysis of Lateral Stability and Ride of an Indian Railway Constrained Dual-Axle Bogie Frame," SAE Int. J. Commer. Veh. 16(2):213-228, 2023,
Additional Details
Nov 10, 2022
Product Code
Content Type
Journal Article