Browse Topic: Drag

Items (4,467)
Tyre rolling resistance is a fundamental parameter in automotive engineering, directly impacting vehicle fuel efficiency and overall performance. The Rolling Resistance Coefficient (RRC) is influenced by tyre construction, material properties, and operational conditions such as inflation pressure, vehicle speed, ambient temperature, and road surface roughness. This study investigates the influence of critical parameters—including test speed, inflation pressure, temperature on the rolling resistance of tyres of various sizes. While previous research has predominantly focused on radial tyres, this paper extends the analysis to include bias-ply tyres. The findings aim to offer valuable insights for policymakers and researchers by examining the behavior of bias tyres under real-world conditions. The results will be particularly beneficial for vehicle and steering system designers, offering data-driven insights to support future tyre and vehicle development. Additionally, the study presents
Joshi, AmolBelavadi Venkataramaiah, ShamsundaraKhairatkar, Vyankatesh
In the automotive industry, external aerodynamic evaluations in digital environments are commonly conducted using simplified, large box tunnels with vehicle being static. These approaches are computationally efficient and ensure faster turnaround time. To closely replicate physical wind tunnel testing or real-world conditions, these simulations are often augmented with moving ground and rolling tire configurations. While such setups provide valuable directional feedback for aerodynamic drag improvements, they frequently exhibit significant discrepancies when compared to physical wind tunnel test data. It is observed that key factors such as wind tunnel blockage effects, boundary layer suctions, when not properly accounted for, distort the local flow field dynamics and introduce errors in the simulations. With OEMs aiming to accelerate time-to-market for new vehicle launches, many aspire to minimize reliance on physical testing and maximize use of digital methods for design sign-off
Sharma, Sandeep KumarChalipat, SujitMaiyya, Sandeep
The Ro-dip Cathodic Electrodeposition (CED) process is new technology used by automotive manufacturers for higher quality corrosion protection in new generation automobiles. This process involves multiple 360-degree rotation of automotive body-in-white (BIW) which exert higher hydrostatic pressure and drag forces on large surface panels of BIW like hood. For maintaining consistent gaps and flushness control at vehicle level, it is important to safeguard the dimensional stability of light weight (crash performance sensitive) steel hood panel while undergoing through this CED process. This study investigates the enhancement of hood structure supports through strategic optimization of support rod placement and quantity within the Ro-dip CED paint shop system. This Paper underscore the importance of tailored fixture design in the Ro-dip CED process, offering a scalable solution for automotive manufacturers aiming to improve quality while reducing costs associated with dimensional
Tile, VikrantUnadkat, SiddharthAskari, HasanJadhav, Devidas
The Mahindra XUV 3XO is a compact SUV, the first-generation of which was introduced in 2018. This paper explores some of the challenges entailed in developing the subsequent generation of this successful product, maintaining exterior design cues while at the same time improving its aerodynamic efficiency. A development approach is outlined that made use of both CFD simulation and Coastdown testing at MSPT (Mahindra SUV proving track). Drag coefficient improvement of 40 counts (1 count = 0.001 Cd) can be obtained for the best vehicle exterior configuration by paying particular attention to: AGS development to limit the drag due to cooling airflow into the engine compartment Front wheel deflector optimization Mid underbody cover development (beside the LH & RH side skirting) Wheel Rim optimization In this paper we have analyzed the impact of these design changes on the aerodynamic flow field, Pressure plots and consequently drag development over the vehicle length is highlighted. An
Vihan, Nikhil
With increasing demand for improving the vehicle Ride and Handling (R&H) performance, the synergy between vehicle subsystems such as suspension, chassis, brakes & tyres play a major role towards it. In this regard, the interaction between wheel rim width and tyre performance characteristics is a key focus area in vehicle development process. Detailed research is being conducted worldwide to understand their dynamics of interaction and based on the tested data, vehicle manufacturers make the design selection. In this context, the proposed study aims to provide a in-depth analysis of how variations in wheel rim width affect key tyre performance parameters such as lateral force characteristics, damping property, tyre footprint, and pinch cut resistance. Also, the subsequent influence on vehicle-level performance parameters such as R&H, braking, steering, and durability is captured. Based on these analysis, appropriate wheel rim size selection is done which is most optimal for the project
Singh, Ram KrishnanPaua, KetanSundaramoorthy, RagasruobanLenka, Visweswaraahire, ManojAdiga, Ganesh N
Reducing drag forces and minimizing the rear wake region are the main goals of evaluating exterior aerodynamic performance in automobiles. Various literature and experiments shows that the overall fuel computations of the road vehicle improves significantly with the reduction in aerodynamic drag force. In the road vehicle major components of the drag is due the imbalance in pressure between front and rear of the vehicle. At high vehicle speed, aerodynamic drag is responsible for approximately 30 to 40% of the energy consumption of the vehicle. In the recent year, cost of high-performance computing (HPC) has reduced significantly, which helped computational fluid dynamics (CFD) is an affordable tool to the automotive industry for evaluating aerodynamic performance of the vehicle during developing phase. The vehicles aerodynamic performance is greatly impacted by the dynamic environmental conditions it encounters in the real world. Such environmental conditions are difficult to replicate
Chalipat, SujitBiswas, KundanTare, Kedar
This study focuses on enhancing energy efficiency in electric vehicle (EV) thermal management systems through the development and optimization of control logic. A full vehicle thermal management system (VTMS) was modeled using GT-Suite software, incorporating subsystems such as the high voltage battery (HVB), Electric powertrain (EPT), and an 8-zone cabin. Thermal models were validated with experimental data to ensure accurate representation of key dynamics, including coolant to cell heat transfer, cell-to-ambient heat dissipation, and internal heat generation. Control strategies were devised for Active Grille Shutter (AGS) and radiator fan operations, targeting both cabin cooling and EPT thermal regulation. Energy consumption was optimized by balancing aerodynamic drag, fan power, and compressor power across various driving conditions. A novel series cooling logic was also developed to improve HVB thermal management during mild ambient conditions. Simulation results demonstrate
Chothave, AbhijeetKumar, DipeshGummadi, GopakishoreKhan, ParvejThiyagarajan, RajeshPandey, RishabhS, AnanthAnugu, AnilMulamalla, SarveshwarGangwar, Adarsh
With increased deterioration of road conditions worldwide, automotive OEMs face significant challenges in ensuring the durability of structural components. The tyre being the primary point of contact with the road is expected to endure harshest of impacts while maintaining the other performance functions such as Ride & Handling, Rolling resistance, Braking. Thus, it is considered as the most challenging component in terms of design optimization for durability. The current development method relies on physical testing of initial samples, followed by iterative construction changes to meet durability requirements, often giving trade-off in Ride & Handling performance. To overcome these challenges, a frugal simulation-based methodology has been developed for predicting tyre curb impact durability before vehicle-level testing so that corrective action can be taken during the design stage.
Sundaramoorthy, RagasruobanLenka, Visweswara
Transportation sector in India accounts for 12% of total energy consumption. Demand of energy consumption is being met by the imported crude oil, which makes transportation sector more vulnerable to fluctuating international crude oil prices. India is mindful of its commitment in 2016 Paris climate agreement to reduce GHG emissions intensity of its GDP by 40% by 2030 as compared to 2005 levels. To fast track the decarbonization of transportation sector, commercial vehicle manufacturers have been exploring other viable options such as battery electric vehicles (BEVs) as a part of their fleet. As on today, BEV has its own challenges such as range anxiety & high total cost of ownership. Range anxiety can be certainly addressed by optimum sizing of electric powertrain, reduction in specific energy consumption (SEC) & use of effective regeneration strategies. Higher SEC can be more effectively addressed by doing vehicle energy audit thereby estimating the energy losses occurring at each
Gijare, SumantKarthick, K.Juttu, SimhachalamThipse, Sukrut S.A, JothikumarJ, Frederick RoystonSR, SubasreeG, HariniM, Senthil Kumar
In this work, the complex wake flow from a double-slanted Ahmed body with an upper slant of α = 25° and a standard single-slanted Ahmed body with a slant angle of 40° were used to evaluate vortex identification methods for automotive wake flows. Multiple three-dimensional (3D) vortex identification methods including Q−, λ 2−, Ω− criteria, and Liutex method and the two-dimensional (2D) Γ1− criterion were evaluated against the streamline topology as a pseudo-truth model. Of the 3D methods analyzed, none were found to produce wholly satisfactory results. The Q− and λ 2−criteria were plagued by high threshold sensitivity and a failure to separate shear from rotation which led to inconsistent identification of the weak, lower-rotation vortices. While the Ω−criterion was able to mitigate the issues related to threshold sensitivity and separation of shear and rotation by consistently identifying the weak vortices, the identified structure did not align well with the streamline topology
Aultman, MatthewDuan, Lian
The front wing is a critical component of a Formula 1 car, directly influencing aerodynamic efficiency and overall performance. This study focuses on optimizing the computational simulation process for a Formula 1 front wing, using the Imperial Front Wing (IFW) model as a benchmark. Computational Fluid Dynamics (CFD) simulations were for this study, with a particular emphasis on evaluating ground effect and aerodynamic drag characteristics. A higher ground height configuration of the IFW is evaluated in this study. The results, including aerodynamic coefficients and fluid flow visualizations, were compared with findings from previous literature to assess their accuracy and consistency. The study demonstrated strong alignment with theoretical expectations, validating the simulation approach. Additionally, this research lays the groundwork for further refinements in mesh optimization and simulation methodologies, contributing to more efficient aerodynamic analysis in high-performance
Victor, Gabriel Santos Barreto FreitasGonzalez, José Fernando PazAlves, Julio César LelisBuscariolo, Filipe Fabian
This study focuses on the multifunctional three-body high-speed unmanned boat model, and experimentally measures the roll attenuation characteristics under different draft conditions. It focuses on the influence of the initial roll angle on roll attenuation, and analyzes the change pattern of roll angle over time. Experimental results show that the model shows obvious self-oscillation period and amplitude attenuation. Based on the system identification theory and combined with improved genetic algorithms, a mathematical model used to simulate the roll attenuation motion of the boat model was constructed. The difference between experimental data and fitted values was further evaluated using identification software and verified with data at specific roll angles. In addition, the study also deeply analyzed the change trend of the roll moment coefficient with the initial roll angle. By comparing the experimental results of the three-mall boat and the catamaran, it was found that the three
Zhang, DiTong, WeiYu, QingzhuLiu, Bofei
Off-highway vehicles (OHVs) routinely navigate unstable and varied terrains—mud, sand, loose gravel, or uneven rock beds—causing increased rolling resistance, reduced traction, and high energy expenditure. Traditional rigid chassis systems lack the flexibility to adapt dynamically to changing surface conditions, leading to inefficiencies in vehicle stability, maneuverability, and fuel economy. This paper proposes an adaptive terrain morphing chassis (ATMC) that can actively modify its structural geometry in real-time using embedded sensors, hydraulic actuators, and soft robotic elements. Drawing inspiration from nature and recent advances in adaptive materials, the ATMC adjusts vehicle ground clearance, track width, and load distribution in response to terrain profile data, thereby optimizing fuel efficiency and performance. Key contributions include: A multi-sensor fusion system for real-time terrain classification Hydraulic actuators and morphing polymers for variable chassis
Vashisht, Shruti
Real Driving Emission (RDE) testing for motorcycles presents unique challenges due to the motorcycle’s lightweight construction, limited mounting space, and sensitivity to added mass and aerodynamic drag. Full-functional automotive Portable Emission Measurement Systems (PEMS), while highly accurate, are often impractical for two-wheelers as their weight and size can alter driving resistances, fuel consumption, and emission profiles, but also complicate installation and probably effect the drivability of the vehicle. To address these limitations, lightweight alternatives such as Mini-PEMS and ultralightweight alternatives such as Sensor-based Emission Measurement Systems (SEMS) offer compact, low-power solutions tailored for small vehicles. SEMS are typically equipped with lower cost sensors and low-tech gas conditioning systems compared to PEMS. Due to this these systems may not meet regulatory homologation requirements. Nevertheless, they provide justifiable accuracy for many real
Schurl, SebastianLienerth, PeterJaps, LeonidSchroeder, MatthiasSchmidt, StephanKirchberger, Roland
India, being one of the largest automotive markets has considered various policies affecting fuel efficiency to curb vehicle carbon emissions. In a typical light-duty vehicle (LDV), around 20% of the fuel's energy is used to power the wheels and overcome aerodynamic drag resistance. Aerodynamic drag resistance, influenced by the projected surface area, cooling drag and velocity refers to the resistive force encountered by the vehicle. Furthermore, cooling drag resistance is determined by the effective cooling system architecture and aerodynamic design of the front-end module (FEM), which has major impact on the vehicle's performance and ram curve. In the pursuit of enhancing cooling system architecture, this paper investigates thermal performance and structural integrity of using common fins for both the condenser and radiator to improve the inlet aerodynamic performance which lowers cooling fan power consumption. Preliminary results show a 12% notable reduction in motor power
K, MuthukrishnanVijayaraj, Jayanth MuraliN, AswinNarashimagounder, ThailappanMahobia, Tanmay
System-level design decisions in Formula SAE (FSAE) vehicles drive all downstream subsystem designs, yet these decisions are often based on historical precedent or anecdotal evidence rather than rigorous analysis. This work presents a simulation-driven methodology to support data-informed decisions early in the design process, specifically examining how overall vehicle parameters—such as engine power, vehicle mass, aerodynamic drag and lift, wheelbase, and track width—influence performance in a representative FSAE endurance scenario. Two types of lap-time simulation tools were used in this study: OpenLAP, a point-mass simulator, and ChassisSim, a transient 3D vehicle dynamics simulator that incorporates suspension geometry, yaw response, weight transfer, and steering effects. Initial simulations with OpenLAP were used to rapidly identify trends and guide early design decisions, while ChassisSim was used for detailed sensitivity analyses and to validate system-level trade-offs in a more
Hernandez, Andy JoseBachman, John Christopher
Electro-mechanical braking (EMB) system has emerged as a potential candidate that serves the brake-by-wire technology. Several mechanisms are used to transmit the clamp force, where each has efficiency losses due to static friction and viscous damping. Compensating these losses is essential for accurate responses such that meeting the performance goal and improving the stopping distance of the EMB. Mathematical and empirical models are used to estimate these losses so that clamp force is accurately estimated and controlled. However, none of these models are capable of addressing the part-to-part variation or predicting the impact of other noise factors on these losses such as operating temperature and degradation. The purpose of this work is to online estimate the EMB coulomb friction by introducing an external torque command over a period of time while observing the system’s response. This approach continuously measures the coulomb friction while the system is in normal operation
Aljoaba, SharifRamakrishnan, RajaDobbs, Jeremy
Electric vehicles (EVs) require improved drag performance from wheel bearings to achieve a longer range. EVs are heavier and have higher torque output compared to internal combustion-powered vehicles. Due to the increased weight and torque of EVs, there will be higher loads at the bearing-to-knuckle joint. These increased loads may necessitate higher clamp loads to maintain joint integrity. However, higher clamp loads can lead to distortion or reduced roundness of the wheel bearing outer ring. Such distortion permanently increases drag and reduces bearing life. Therefore, after vehicle corner assembly with higher clamp loads, it is critical to minimize outer ring distortion during the initial assembly and throughout the bearing's lifespan. This paper will cover the design considerations for the wheel bearing outer ring to minimize distortion, utilizing Computer-Aided Engineering (CAE) analysis for various designs. A Design of Experiments (DOE) will be conducted to understand the
Mandhadi, Chaitanya ReddyCallaghan, KevinSutherlin, RobertLee, SeungpyoLee, YeonsikBovee, Benjamin
As automotive manufacturers have tried to set themselves apart by reducing emissions, and increasing vehicle range/fuel economy by eliminating any energy loss from inefficiencies on the vehicle, the brake corners have been an area of interest to reduce off-brake torque to zero in all conditions. Caliper designers can revise some attributes like piston seal grooves, and pad retraction features to reduce drag, but even if a caliper is designed perfectly in all aspects, trying to measure it in a reliable and repeatable manner proves to be difficult. There are many ways to measure brake drag all with ranging complexity. Some of the simplest measurements are the most repeatable, but it excludes the majority of the vehicle inputs. The most vehicle representative testing requires the most complex equipment and comes with the most challenges. This paper will focus mainly on the different ways residual brake drag can be measured, the benefits and challenges to each of them, the problems trying
Retting, Joshua
The recent advancements in vehicle powertrain and aerodynamics have led to an increase in the production of faster passenger cars, where high-speed driving scenarios demand equally efficient and safe braking systems to ensure the safety of both passengers and surrounding vehicles and pedestrians. At high speeds, aerodynamics can significantly impact overall vehicle braking performance due to the interaction between downforces and lift forces, which, in turn, affects the vehicle’s overall dynamic weight, directly contributing to the maximum attainable deceleration or braking force. Accordingly, the braking performance can be maximized by generating more downforce by means of rear spoilers, while taking into consideration their inevitable drag, which adds to the total vehicle motion resistance. Therefore, this proposed work aims to investigate the effectiveness of employing an active rear spoiler to enhance the vehicle’s braking performance, without introducing remarkable drag that could
Abidou, DiaaAbdellah, Ahmed HelmyHaggag, Salem
In recent years, there has been a significant rise in research focused on estimating the base pressure (Pb) characteristics of convergent–divergent nozzles with sudden expansion regions. This study explores the use of geometrical parameters as a control strategy for nozzles experiencing abrupt expansion at supersonic Mach numbers within an axisymmetric duct. It focuses on four distinct novel expansion duct configurations: square nozzle (SN), step square nozzle (SSN), curved nozzle (CN), and double curved nozzle (DCN). In this work, the high-speed compressible flow investigation is carried out numerically using control volume method on the nozzle with a fixed area ratio (AR) and L/D nozzle. Standard k-ε turbulence model is used in the analysis to access the recirculation region formed near the nozzle walls. The recirculation zone directly influences the Pb and shock cell. For NPR range from 2 to 10, SSN and CN shows an increase in Pb, which further increases the thrust and decreases the
Raj, R. JiniKumar, P. DeepakPanchksharayya, D. V.Kousik Kumaar, R.Praveen, N.
This paper introduces a new approach for measuring changes in drag force across different vehicle configurations using an on-road testing technique. The method involves fixing the vehicle’s power across configurations and then measuring the resulting speed differences. A detailed formulation is provided on how these speed variations can be used to calculate the change in drag force for each configuration. The OBD II port is used to access and record additional data necessary for the calculations. The method is applied to both a passenger car and a commercial van to evaluate drag changes for different vehicle add-ons. A roof sign was installed at various positions along the roof of the vehicles to assess drag increases, while novel rear appendages were fitted to both vehicles to evaluate the resulting drag reductions. Detailed CFD simulations were performed on the road-tested configurations to compare the simulated drag changes with those measured on the road. Excellent agreement was
Connolly, Michael GerardIvankovic, AlojzO'Rourke, Malachy J.
An energy-use analysis is presented to examine the potential energy-savings and range-extension benefits of aerodynamic improvements to tractors and trailers used in commercial transportation. The impetus for the study was the observation of aerodynamically-redesigned/optimized tractor shapes of emerging zero-emission commercial vehicles that have the potential for significant drag reduction over conventional aerodynamic tractors. Using wind-tunnel test results, a series of aerodynamic performance models were developed representing a range of tractor and trailer combinations. From modern day-cab and sleeper-cab tractors to aerodynamically-optimized zero-emission cab concepts, paired with standard dry-van trailers or low-drag trailer concepts, the study examines the energy use, and potential savings thereof, from implementing various fleet configurations for different operational duty cycles. An energy-use analysis was implemented to estimate the energy-rate contributions associated
McAuliffe, BrianGhorbanishohrat, Faegheh
Experimental studies of wind tunnel blockage for road vehicles have usually been conducted in model wind tunnels. Models have been made in a range of scales and tested in a working section of fixed size. More recently CFD studies of blockage have been undertaken, which allow a fixed vehicle size and the blockage is varied by changing the cross section of the flow domain. This has some inherent advantages. A very recent database of CFD derived drag and lift coefficients for different road vehicle shapes and simple bodies tested in a closed wall tunnel with a wide range of blockage ratios has become available and provides some additional insight into the blockage phenomenon. In this paper a process is developed to derive the parameters influencing wind tunnel blockage corrections from CFD data. These are shown to be reasonably effective for correcting the measured drag and lift coefficients at blockage ratios up to 10%.
Howell, JeffButcher, DanielGleason, Mark
The natural wind experienced on public roads can increase the yaw angle and therefore drag coefficient (CD), which may contribute to the discrepancy between catalog fuel economy and actual fuel economy. The impact of yaw characteristics alone on fuel economy during actual driving has not been verified or proven as it is difficult to obtain actual driving data under uniform conditions. For this reason, shape optimization is normally performed at zero-yaw through the aerodynamic development phases. In this paper, two vehicles with different yaw sensitivity characteristics are driven simultaneously, and fuel economy measurements are performed simultaneously with ambient airflow, environment, and vehicle conditions. The results where the conditions of the two vehicles match are extracted to clarify the impact of the differences of yaw characteristics on fuel economy. The obtained results matched the values predicted by theoretical calculations for the impact of yaw angle on fuel economy
Onishi, YasuyukiNichols, LarryMetka, Mattmasumitsu, YasutakaInoue, Taisuke
Novel experimental and analytical methods were developed with the objective of improving the reliability and repeatability of coast-down test results. The methods were applied to coast-down tests of a SUV and a tractor-trailer combination, for which aerodynamic wind-tunnel data were available for comparison. The rationale was to minimize the number of unknowns in the equation of motion by measuring rolling and mechanical resistances and wheel-axle moments of inertia, which was achieved using novel experimental techniques and conventional rotating-drum tests. This led to new modelling functions for the rolling and mechanical resistances in the equation of motion, which was solved by regression analysis. The resulting aerodynamic drag coefficient was closer to its wind-tunnel counterpart, and the predicted low-speed road load was closer to direct measurements, than the results obtained using conventional methods. It is anticipated that applying the novel techniques to characterize the
Tanguay, Bernardde Souza, Fenella
A new method for bearing preload measurement has shown potential for both high accuracy and fast cycle time using the frequency response characteristics of the power transmission system. One open problem is the design of the production controller, which relies on a detailed sensitivity study of the system frequency response to changes in the bearing and system design parameters. Recently, an analytical model was developed for multi-row tapered roller bearings that includes all appropriate bearing and power transmission system design parameters. During the assembly process, some of the parameters related to the roller positions cannot be controlled. These parameters include the actual position of the first roller compared to the vertical axis, the relative position of the rollers between the bearing rows, and others. This work presents a sensitivity analysis of the effects of those uncontrollable parameters on the analytical model. The sensitivity study determines the percentage change
Gruzwalski, DavidMynderse, James
Roller bearings are used in many rotating power transmission systems in the automotive industry. During the assembly process of the power transmission system, some types of roller bearings (e.g., tapered roller bearings) require a compressive preload force. Those bearings' rolling resistance and lifespan strongly depend on the preload set during the installation process. Therefore, accurate preload setting can improve bearing efficiency, increase bearing lifespan, and reduce maintenance costs over the life of the vehicle. A new method for bearing preload measurement has shown potential for high accuracy and fast cycle time using the frequency response characteristics of the power transmission system. One open problem is the design of the production controller, which relies on a detailed sensitivity study of the system frequency response to changes in the bearing and system design parameters. Recently, an analytical model was developed for multi-row tapered roller bearings that includes
Gruzwalski, DavidMynderse, James
Reducing aerodynamic drag through Vehicle-Following is one of the energy reduction methods for connected and automated vehicles with advanced perception systems. This paper presents the results of an investigation aimed at assessing energy reduction in light-duty vehicles through on-road tests of reducing the aerodynamic drag by Vehicle-Following. This study provides insights into the effects of lateral positioning in addition to intervehicle distance and vehicle speed, and the profile of the lead vehicle. A series of tests were conducted to analyze the impact of these factors, conducted under realistic driving conditions. The research encompasses various light-duty vehicle models and configurations, with advanced instrumentation and data collection techniques employed to quantify energy-saving potential. The study featured two sets of L4 capable light duty vehicles, including the Stellantis Pacifica PHEV minivan and Stellantis RAM Truck, examined in various lead and following vehicle
Poovalappil, AmanRobare, AndrewSchexnaydre, LoganSanthosh, PruthwirajBahramgiri, MojtabaBos, Jeremy P.Chen, BoNaber, JeffreyRobinette, Darrell
The current Range Rover is the fifth generation of this luxury SUV. With a drag coefficient of 0.30 at launch, it was the most aerodynamically efficient luxury SUV in the world. This aerodynamic efficiency was achieved by applying the latest science. Rear wake control was realised with a large roof spoiler, rear pillar and bodyside shaping, along with an under-floor designed to reduce losses over a wide range of vehicle configurations. This enabled manipulation of the wake structure to reduce drag spread, optimising emissions measured under the WLTP regulations. Along with its low drag coefficient, in an industry first, it was developed explicitly to achieve reduced rear surface contamination with reductions achieved of 70% on the rear screen and 60% over the tailgate when compared against the outgoing product. This supports both perceptions of luxury along with sensor system performance, demonstrating that vehicles can be developed concurrently for low drag and reduced rear soiling
Chaligné, SébastienGaylard, Adrian PhilipSimmonds, NicholasTurner, Ross
As global warming and environmental problems are becoming more serious, tires are required to achieve a high level of performance trade-offs, such as low rolling resistance, wet braking performance, driving stability, and ride comfort, while minimizing wear, noise, and weight. However, predicting tire wear life, which is influenced by both vehicle and tire characteristics, is technically challenging so practical prediction method has long been awaited. Therefore, we propose an experimental-based tire wear life prediction method using measured tire characteristics and the wear volume formula of polymer materials. This method achieves practical accuracy for use in the early stages of vehicle development without the need for time-consuming and costly real vehicle tests. However, the need for improved quietness and compliance with dust regulations due to vehicle electrification requires more accuracy, leading to an increase in cases requiring judgment through real vehicle tests. To address
Ando, Takashi
Vehicle handling is significantly influenced by aerodynamic forces, which alter the normal load distribution across all four wheels, affecting vehicle stability. These forces, including lift, drag, and side forces, cause complex weight transfers and vary non-linearly with vehicle apparent velocity and orientation relative to wind direction. In this study, we simulate the vehicle traveling on a circular path with constant steering input, calculate the normal load on each tire using a weight transfer formula, calculate the effect of lift force on the vehicle on the front and rear, and calculate the vehicle dynamic relation at steady state because the frequency of change due to aerodynamic load is significantly less than that of the yaw rate response. The wind velocity vector is constant while the vehicle drives in a circle, so the apparent wind velocity relative to the car is cyclical. Our approach focuses on the interaction between two fundamental non-linearity’s: the nonlinear
Patil, HarshvardhanWilliams, Daniel
In order to manage the serious global environmental problems, the automobile industry is rapidly shifting to electric vehicles (EVs) which have a heavier weight and a more rearward weight distribution. To secure the handling and stability of such vehicles, understanding of the fundamental principles of vehicle dynamics is inevitable for designing their performance. Although vehicle dynamics primarily concerns planar motion, the accompanying roll motion also influences this planar motion as well as the driver's subjective evaluation. This roll motion has long been discussed through various parameter studies, and so on. However, there is very few research that treats vehicle sprung mass behavior as “vibration modes”, and this perspective has long been an unexplored area of vehicle dynamics. In this report, we propose a method to analytically extract the vibration modes of the sprung mass by applying modal analysis techniques to the governing equations of vehicle handling and stability
Kusaka, KaoruYuhara, Takahiro
With the increasing prevalence of electric vehicles (EVs), decreasing vehicle drag is of upmost importance, as range is a primary consideration for customers and has a direct bearing on the cost of the vehicle. While the relationship between drag and range is well understood, there exists a discrepancy between the label range and the real-world range experienced by customers. One of the factors influencing the difference is the ambient wind condition that modifies the resultant air speed and yaw angle, which is typically minimized during SAE coast-down testing. The following study implements a singular wind-averaged drag (WAD) coefficient which is derived from a 3-point yaw curve to show the impact of yaw as compared to the zero-yaw condition. This leads to an interesting dilemma for the vehicle aerodynamicist: whether to optimize the vehicle's exterior shape for low wind (zero yaw) conditions or for real-world conditions where the ambient wind generally produces a few degrees of yaw
Kaminski, MeghanD'Hooge, AndrewBorton, Zackery
Items per page:
1 – 50 of 4467