Browse Topic: Airbag systems
In this study, an optimized structure for opening the headlining considering the deployment of the face-to-face roof airbag was studied. It was confirmed that the deployment performance differs depending on the skin of the headlining, and a standardized structure with mass production was proposed. Non-woven fabric and Tricot skin, which are economical and high-end specifications, satisfy the performance of PVC fusion application specifications after cutting 80% of the skin. The structure that satisfies the entire body including the knit specifications is a type that separates the roof airbag area piece, the corresponding soft piece is separated, and the deployment performance is satisfied with safety. Therefore, the structure is proposed as a standardized structure. This structure is expected to be applicable to roof DAB (Driver Airbag), PAB (Passenger Airbag), and Sunroof Airbag, which will be necessary technologies to secure indoor space. Regardless of which area the airbag will be
Airbags are crucial elements of passive safety in vehicles that help minimizing occupant injuries during various crash scenarios such as frontal, side, and oblique impacts. Airbags in cars are now mandatory in many countries, and their performance depends on how well the system is designed. A well-tuned airbag deployment algorithm is necessary to score superior NCAP safety ratings. Tuning of airbag deployment algorithms requires several data points which are obtained through actual crash testing. This is a cumbersome and expensive process as it involves crash tests for each scenario (e.g., full front barrier, offset deformable barrier, angled impact, etc.) at multiple test speeds. These tests are destructive and render the vehicles only worthy of scrap. The data gathered from various sensors (acceleration, pressure, etc.) is used to develop robust vehicle model specific algorithms that must correctly identify the crash scenario and send airbag firing signal at the optimal pre-decided
This specification establishes the performance and validation requirements for the inflator assembly used in airbag modules
This document establishes recommended practices to validate acceptable corrosion performance of metallic components and assemblies used in medium truck, heavy truck, and bus and trailer applications. The focus of the document is methods of accelerated testing and evaluation of results. A variety of test procedures are provided that are appropriate for testing components at various locations on the vehicle. The procedures incorporate cyclic conditions including corrosive chemicals, drying, humidity, and abrasive exposure. These procedures are intended to be effective in evaluating a variety of corrosion mechanisms as listed in Table 1. Test duration may be adjusted to achieve any desired level of exposure. Aggravating conditions such as joint rotation, mechanical stress, and temperature extremes are also considered. This document does not address the chemistry of corrosion or methods of corrosion prevention. For information in these areas, refer to SAE J447 or similar standard
Premium instrument panels (IPs) contain passenger airbag (PAB) systems that are typically comprised of a stiff plastic substrate and a soft ‘skin’ material which are adhesively bonded. During airbag deployment, the skin tears along the scored edges of the door holding the PAB system, the door opens, and the airbag inflates to protect the occupant. To accurately simulate the PAB deployment dynamics during a crash event all components of the instrument panel and the PAB system, including the skin, must be included in the model. It has been recognized that the material characterization and modeling of the skin tearing behavior are critical for predicting the timing and inflation kinematics of the airbag. Even so, limited data exists in the literature for skin material properties at hot and cold temperatures and at the strain rates created during the airbag deployment. This paper presents tensile test results of one typical skin material conducted at four different strain rates of 0.01/s
This SAE Recommended Practice describes common definitions and operational elements of Event Data Recorders. The SAE J1698 series of documents consists of the following: SAE J1698-1 - Event Data Recorder - Output Data Definition: Provides common data output formats and definitions for a variety of data elements that may be useful for analyzing vehicle crash and crash-like events that meet specified trigger criteria. SAE J1698-2 - Event Data Recorder - Retrieval Tool Protocol: Utilizes existing industry standards to identify a common physical interface and define the protocols necessary to retrieve records stored by light duty vehicle Event Data Recorders (EDRs). SAE J1698-3 - Event Data Recorder - Compliance Assessment: Defines procedures that may be used to validate that relevant EDR output records conform with the reporting requirements specified in Part 563, Table 1 during the course of FMVSS-208, FMVSS-214, and other applicable vehicle level crash testing
An automobile airbag deploys thanks to an accelerometer — a sensor that detects sudden changes in velocity. Accelerometers keep rockets and airplanes on the correct flight path, provide navigation for self-driving cars, and rotate images so that they stay right-side up on cellphones and tablets, among other essential tasks
This specification covers performance testing at all phases of development, production, and field analysis of electrical terminals, connectors, and components that constitute the electrical connection systems in road vehicle applications that are: low voltage (0 to 20 VDC) or Coaxial. Incomplete (mechanical) specifications for jacketed twisted pair connectors are also provided. These procedures are only applicable to terminals used for In-Line, Header, and Device Connector systems. They are not applicable to Edge Board connector systems, twist-lock connector systems, >20 VAC or DC, or to eyelet terminals. No electrical connector, terminal, or related component may be represented as having met USCAR specifications unless conformance to all applicable requirements of this specification have been verified and documented. All required verification and documentation must be done by the supplier of the part or parts. If testing is performed by another source, it does not relieve the primary
Current numerical simulation practice does not capture the seat mounted Side Airbag (SAB) breaking out through the seat tear seam and its correct early deployment characteristics. A late SAB breakout negatively impacts full SAB deployment and occupant coverage. An early breakout enhances timely SAB positioning and coverage, providing early cushioning to the occupant from the intruding barrier. This paper presents a numerical modeling process capable of predicting and enhancing seat tear seam breakout time and early SAB deployment kinematics. The critical phases used in the development of SAB breakout modeling process are as follows: Phase 1: Physical Tear Seam and Seat Trim coupon tests to characterize physical material properties for the numerical material model development; Phase 2: Numerical Modeling of the Tear Seam and Seat Trim breakout and, Phase 3: Numerical prediction of SAB breakout through a candidate seat tear seam. In the last phase of the study, the validated material
The objective of this document is to enhance the test procedure that is used for ejection mitigation testing per the NHTSA guidelines as mentioned in the FMVSS226 Final Rule document (NHTSA Docket No. NHTSA-2011-0004). The countermeasure for occupant ejection testing is to be tested with an 18kg mass on a guided linear impactor using the featureless headform specifically designed for ejection mitigation testing. SAE does not endorse any particular countermeasure for ejection mitigation testing. However, the document reflects guidelines that should be followed to maintain consistency in the test results. Examples of currently used countermeasures include the Inflatable Curtain airbags and Laminated Glass. The testing procedure is as follows: 1 Determine the daylight opening 2 Identify target locations per the FMVSS226 Final Rule §5.2 a Target locations for all windows and daylight openings b Perform the target elimination process c Reconstitute the targets 3 Determine the zero-plane 4
Seatbelt along with airbag plays a vital role in protecting the lives of occupants in vehicle during a crash. Seat Belt Reminder (SBR) is an audio-visual indicator which alerts the occupant with a lamp on the cluster as well as an audio chime to fasten their seatbelt. To avoid the chime, Occupant often attempt to do pseudo buckling in different ways as buckling the seatbelt behind the occupant or by wrapping the seatbelt at back side of the seat. The current system is not capable of detecting it as the SBR is driven by seatbelt buckle status. To overcome the above limitation, this paper presents a technique which detects pseudo buckling. The proposal in this paper is to enhance the existing system by including magnets and a reed switch. Here the magnet is attached to the seatbelt and a reed switch is placed inside the seatback. The reed switch detects the presence of magnetic field thereby closing/opening the circuit. If the occupant has pseudo buckled, the magnets in the seatbelt will
Modern driver compartment restraint systems have at least three key components that work together: safety belt system, airbags, and collapsible steering column. During a crash, a steering column will collapse at a predetermined force called breakaway force. Once the force of a crash has reached the breakaway force threshold, the column will move towards the motor area. When the column moves, the drivers’ peak forces and acceleration are decreased because the time and distance that are given to decelerate are increased. The usage of a breakaway force element inside the steering column allows car manufacturers to control the movement of the steering column at a certain point during a crash. Any load below the breakaway force, such as airbag deployment and normal or misuse forces applied by the driver, is absorbed by the system. Today’s force-based systems are optimized (design/configure) using various crash configurations, leading to one specific behavior of the column. This article
As a result of trauma to the circuit board or other damage to an airbag control module (ACM), electronic crash data recorded onto a passenger vehicle’s electronically erasable programmable read-only memory (EEPROM) chip may be inaccessible by traditional imaging methods and techniques, such as through a diagnostic link connector (DLC) or accessing the data directly from the ACM. Despite the potential damage to the subject module, electronic crash data may still be present on the module’s EEPROM chip. This paper explores and validates a methodology for the removal and reinstallation of a subject EEPROM chip using an identical undamaged exemplar airbag control module and a non-destructive clip-assisted method to gain access to the subject electronic crash data. ACMs were obtained from a 2016 BMW 740i, 2015 Toyota Corolla, 2014 Nissan 370z, 2006 Lexus IS350, 2015 Maserati Ghibli, and 2017 Audi A4. Each module was imaged prior to the chip swap procedure. Each of the six EEPROM memory chips
One of the techniques that accident reconstructionists and experts utilize to define the severity of an accident is based on the airbag deployment thresholds. As such, if during an event, the airbags did not deploy, it is concluded that the threshold could be considered as the upper bound for the forces and the accelerations that the vehicle experienced as a result of the impact. The National Highway Transportation Safety Administration (NHTSA) provides a database based on their investigations on motor vehicle accidents in which some of these investigations involved imaging the airbag control module (ACM) data. NHTSA made these data publicly available. The goal of this study was to analyze the event data recorder (EDR) data from these real-world incidents with a focus on the events in which vehicles’ side airbags were deployed as a result of the impacts and determine the lower-bound side airbag deployment thresholds during real-world cases. In addition, this study is focused on the
Items per page:
50
1 – 50 of 1080