Browse Topic: Safety belts
ZF rethinks safety with new airbags, belt tensioner. ZF knows that the steering wheel remains one of the most relevant components in an automotive interior, because this is where drivers have direct contact to the vehicle. As steering wheels become adorned with more functions than some drivers know what to do with, ZF put Marc Schledorn in charge of the teams rethinking how the driver airbag could operate in a world with ever-busier steering wheels. The solution is a new type of steering wheel airbag that ZF Lifetec (ZF's renamed Passive Safety Systems division) announced in June. Instead of moving through a thermoplastic airbag cover mechanically fixed in the center of the wheel, Schledorn told SAE Media, the new design positions the airbag on the top side of the steering wheel and then expands through the upper rim of the wheel when needed.
Background: The Indian automobile industry, including the auto component industry, is a significant part of the country’s economy and has experienced growth over the years. India is now the world’s 3rd largest passenger car market and the world’s second-largest two-wheeler market. Along with the boon, the bane of road accident fatalities is also a reality that needs urgent attention, as per a study titled ‘Estimation of Socio-Economic Loss due to Road Traffic Accidents in India’, the socio-economic loss due to road accidents is estimated to be around 0.55% to 1.35% of India’s GDP [27] Ministry of road transport and highways (MoRTH) accident data shows that the total number of fatalities on the road are the highest (in number terms) in the world. Though passenger car occupant fatalities have decreased over the years, the fatalities of vulnerable road users are showing an increasing trend. India has committed to reduce road fatalities by 50% by 2030. In this context, the automotive
SS304 is a type of stainless steel that is well-known for its high ductility and resistance to corrosion; as a result, it is typically utilized in a variety of applications, such as the exhaust systems of automobiles and the springs that are used in seatbelts. Because of its qualities, it will eventually be employed in a variety of body parts, including fuel tanks and chassis, among other things. Due to its properties, SS304 is known to be incredibly difficult to machine using conventional methods. Through a wire electrical discharge machining process, it is easier to cut complex materials with high surface finishes. In this study, a study was conducted on the WEDM process parameters of SS304 to optimize its machining process. The study was carried out using the DoE approach, which involved planning the various experiments. The parameters of the process, such as the pulse on time, peak current, and off time, were analyzed to determine their performance. The various performance measures
Pyrotechnic seat belt pretensioners typically remove 8–15 cm of belt slack and help couple an occupant to the seat. Our study investigated pretensioner deployment on forward-leaning, live volunteers. The forward-leaning position was chosen because research indicates that passengers frequently depart from a standard sitting position. Characteristics of the 3D kinematics of forward-leaning volunteers following pretensioner deployment determines if body size is correlated with subject response. Nine adult subjects (three female), ages 18–43 years old, across a wide range of body sizes (50–120 kg) were tested. The age was limited to young, active adults as pyrotechnic pretensioners can deliver a notable force to the trunk. Subjects assumed a forward-leaning position, with 26 cm between C7 and the headrest, in a laboratory setting that replicated the passenger seat of a vehicle. At an unexpected time, the pretensioner was deployed. 3D kinematics were measured through a nine-camera motion
This SAE Aerospace Standard (AS) specifies laboratory test procedures and minimum requirements for the manufacturer of restraint systems for use in civil aircraft. It is intended to establish a minimum level of quality which can be called upon by the designer of those systems. However, compliance with this standard alone may not assure adequate performance of the restraint system under normal and emergency conditions. Such performance requires consideration of factors beyond the scope of this standard, and must be demonstrated by a system evaluation procedure which includes the seat, the occupant, the specific restraint installation, and the cabin interior configuration. This standard specifies the requirements for Type 1, Type 2, and Type 3 restraint systems. Buckles that release automatically or through any means other than the direct action of the fingers or thumb on the buckle are beyond the scope of this standard.
This SAE Recommended Practice describes common definitions and operational elements of Event Data Recorders. The SAE J1698 series of documents consists of the following: SAE J1698-1 - Event Data Recorder - Output Data Definition: Provides common data output formats and definitions for a variety of data elements that may be useful for analyzing vehicle crash and crash-like events that meet specified trigger criteria. SAE J1698-2 - Event Data Recorder - Retrieval Tool Protocol: Utilizes existing industry standards to identify a common physical interface and define the protocols necessary to retrieve records stored by light duty vehicle Event Data Recorders (EDRs). SAE J1698-3 - Event Data Recorder - Compliance Assessment: Defines procedures that may be used to validate that relevant EDR output records conform with the reporting requirements specified in Part 563, Table 1 during the course of FMVSS-208, FMVSS-214, and other applicable vehicle level crash testing.
This recommended practice describes boundaries of hand control locations that can be reached by a percentage of different US driver populations in passenger cars, multi-purpose passenger vehicles, and light trucks (Class A vehicles). This practice is not applicable to heavy trucks (Class B vehicles).
This SAE Recommended Practice provides design, test, and performance guidelines on the comfort, fit, and convenience for active restraint systems for heavy trucks and multipurpose passenger vehicle applications over 10000 pounds gross vehicle weight rating (GVWR). The information pertains to the forward facing seating positions.
This SAE Standard defines the safety and performance requirements for low-speed vehicles (LSVs). The safety specifications in this document apply to any powered vehicle with a minimum of four wheels, a maximum level ground speed of more than 32 km/h (20 mph) but not more than 40 km/h (25 mph), and a maximum gross vehicle weight of 1361 kg (3000 pounds), that is intended for operating on designated roadways where permitted by law.
ABSTRACT This paper focuses on the application of a novel Additive Molding™ process in the design optimization of a combat vehicle driver’s seat structure. Additive Molding™ is a novel manufacturing process that combines three-dimensional design flexibility of additive manufacturing with a high-volume production rate compression molding process. By combining the lightweighting benefits of topology optimization with the high strength and stiffness of tailored continuous carbon fiber reinforcements, the result is an optimized structure that is lighter than both topology-optimized metal additive manufacturing and traditional composites manufacturing. In this work, a combat vehicle driver’s seatback structure was optimized to evaluate the weight savings when converting the design from a baseline aluminum seat structure to a carbon fiber / polycarbonate structure. The design was optimized to account for mobility loads and a 95-percentile male soldier, and the result was a reduction in
This SAE Aerospace Recommended Practice (ARP) specifies criteria for the design, development, standardization, and comprehension testing of placards containing pictures, drawings, symbols, and/or written instructions for locating and operating aircraft emergency equipment. This ARP also provides guidance in the selection and implementation of warning placards intended to instruct occupants inside, and rescue personnel outside, the aircraft.
This SAE Standard defines requirements relating to the elements of design, operation, and maintenance of light utility vehicles (LUVs). The safety specifications in this document apply to any self-propelled, operator-controlled, off-highway vehicle 1829 mm (72 inches) or less in overall width, exclusive of added accessories and attachments, operable on three or more wheels or tracks, primarily intended to transport material loads or people, with a gross vehicle weight of 2500 kg (5500 pounds) or less, and a maximum design speed less than or equal to 40.23 km/h (25 mph). This document is not intended to cover go-karts (ASTM F2007-07a), fun-karts (ASTM F2011-02e1), dune buggies, and all terrain-vehicles (ATVs) complying with ANSI/SVIA 1.
This SAE Recommended Practice provides a Glossary of Terms commonly used to describe Seat Belt Restraint Systems Hardware and their function. These terms are currently defined in various SAE Recommended Practices but are sometimes inconsistent. It is intended for this document to supersede the definitions found in separate SAE Recommended Practices.
This SAE Recommended Practice describes test procedures for evaluating hardware used in motor vehicle seat belt assemblies. Related hardware performance requirements are described in SAE J141. Test procedures and performance requirements for retractors will be covered in separate SAE Recommended Practices to be issued later.
This SAE Recommended Practice describes performance requirements for hardware used in motor vehicle seat belt assemblies when tested in accordance with the test procedures specified in SAE J140. Test procedures and performance requirements for retractors will be covered in separate SAE Recommended Practices to be issued later.
This SAE Recommended Practice specifies performance requirements and test procedures for the strength and location of seat belt assembly anchorages. It applies to seat belt anchorages attached to vehicle body structure or to seat assemblies in the vehicle. Design Considerations are specified in SAE J383.
This SAE Recommended Practice specifies design recommendations for the location of seat belt assembly anchorages which will promote proper transfer of occupant restraint forces on the strongest parts of the human anatomy to the vehicle or seat structure. Test procedures are specified in SAE J384.
This SAE Recommended Practice describes the test procedures for conducting rear impact occupant restraint and equipment mounting integrity tests for ambulance patient compartment applications. Its purpose is to describe crash pulse characteristics and establish recommended test procedures that will standardize restraint system and equipment mount testing for ambulances. Descriptions of the test set-up, test instrumentation, photographic/video coverage, and the test fixtures are included.
This SAE Recommended Practice describes the test procedures for conducting side impact occupant restraint and equipment mounting integrity tests for ambulance patient compartment applications. Its purpose is to describe crash pulse characteristics and establish recommended test procedures that will standardize restraint system and equipment mounting testing for ambulances. Descriptions of the test set-up, test instrumentation, photographic/video coverage, and the test fixtures are included.
This SAE Recommended Practice describes the test procedures for conducting frontal impact occupant restraint and equipment mounting integrity tests for ambulance patient compartment applications. Its purpose is to describe crash pulse characteristics and establish recommended test procedures that will standardize restraint system and equipment mounting testing for ambulances. Descriptions of the test set-up, test instrumentation, photographic/video coverage, and the test fixtures are included.
Items per page:
50
1 – 50 of 1024