Browse Topic: Radiation

Items (1,688)
Passenger vehicles like buses tend to soak up heat when they are parked under an open sky. The temperatures inside the vehicle can get very high during daytime due to heating, which reduces the thermal comfort levels. All three modes of heat transfer, i.e., conduction, convection and radiation contribute to the heating process. Cool-down tests are performed to replicate this thermal behaviour and evaluate the time required for cooling the internal bus volume to comfortable temperatures. The phenomenon can also be analysed using CFD, and accounts of numerous such studies are available however, the effects of all three modes of heat transfer for practical application are rarely studied. In view of this, an effort has been made to develop a fast and reasonably accurate transient numerical method to predict the thermal behaviour of the cool-down process for a school bus cabin. The effects of all three modes of heating (conduction, convection, and solar radiation) have been evaluated, and
Sharma, ShantanuSingh, RamanandZucker, JamesMoore, Chris
Researchers at the National Institute of Standards and Technology (NIST) and colleagues have developed standards and calibrations for optical microscopes that allow quantum dots to be aligned with the center of a photonic component to within an error of 10 to 20 nanometers (about one-thousandth the thickness of a sheet of paper). Such alignment is critical for chip-scale devices that employ the radiation emitted by quantum dots to store and transmit quantum information
Advances in optical sensors and imaging technologies are ever more rapidly assimilated into how humans interact, understand themselves, and explore the world around them. The scope of inquiry for optical devices is broad and they enable technologies within, such as implanted transdermal bioMEMS devices, and beyond, or as space-flight surveyors deployed as near and deep space instruments. Central to the functionality of modern optical devices, ultra-narrow bandpass (UNBP) thin-film optical filters enable discrimination of sub-nanometer bands inside broad spectra. These filters, pioneered as NIR DWDM filters for the telecommunications industry, are now essential in extracting meaningful signal from imaging and sensing devices operating anywhere between the deep ultraviolet and the mid infra-red bands
Sensor packaging, particularly for microelectromechanical systems (MEMS), is a critical aspect of modern electronics. MEMS developers have demonstrated a variety of innovative microsensors for almost every possible sensing modality including temperature, pressure, inertial forces, chemical species, magnetic fields, radiation, etc. While MEMS sensors are revolutionizing various industries with their precision and miniaturization, they can present unique product development challenges and risks during design, development, and manufacturing
A novel method for Single Event Effect (SEE) Radiation Testing using Built-In Self-Test (BIST) feature of indigenously developed Vikram1601 processor is discussed. Using BIST avoids need of exhaustive test vectors to ensure test coverage of all internal registers and a physical memory to store test vectors. Thus, processor is the only element vulnerable to radiation damage during testing. In the first part, a brief introduction, need and methods of radiation testing of electronics especially SEE of radiation on Silicon based devices, different radiation effects, radiation damage mechanisms and testing methods are described. A brief introduction to Vikram1601 processor, the instruction – TST, used as BIST and testing scheme implementation using TST for studying the SEE is explained. Radiation test facilities are explained with respect to the types of testing possible, capabilities, radiation particle species and maximum energies possible, size limitations of Silicon under test and
Joseph, Dominic GeorgeDaniel, JojiK, PadmakumarL, JayalekshmyDevi, Athula
Northwestern University researchers have developed new devices based on a low-cost material to aid in the detection and identification of radioactive isotopes. Using cesium lead bromide in the form of perovskite crystals, the research team found that they were able to create highly efficient detectors in both small, portable devices for field researchers and in very large detectors. The results are more than a decade in the making
Focused on the permanent magnet synchronous motor (PMSM) used in electric, this paper proposes an online insulation testing method based on voltage injection under high-temperature and high-humidity conditions. The effect of constant humidity and temperature on the insulation performance has been also studied. Firstly, the high-voltage insulation structure and principle of PMSM are analyzed, while an electrical insulation testing method considered constant humidity and temperature is proposed. Finally, a temperature and humidity experimental cycling test is carried out on a certain prototype PMSM, taking heat conduction and radiation models, water vapor, and partial discharge into account. The results show that the electrical insulation performance of the motor under constant humidity and temperature operation environment exhibits a decreasing trend. This study can provide theoretical and practical references for the reliable durability design of PMSM
Zhang, WeiQiu, ZizhenKong, ZhiguoHuang, XinWang, Fang
Determining occupant kinematics in a vehicle crash is essential when understanding injury mechanisms and assessing restraint performance. Identifying contact marks is key to the process. This study was conducted to assess the ability to photodocument the various fluids on different vehicle interior component types and colors with and without the use of ultraviolet (UV) lights. Biological (blood, saliva, sweat and skin), consumable and chemical fluids were applied to vehicle interior components, such as seatbelt webbing, seat and airbag fabrics, roof liner and leather steering wheel. The samples were photodocumented with natural light and UV light (365 nm) exposure immediately after surface application and again 14 days later. The review of the photos indicated that fabric type and color were important factors. The fluids deposits were better visualized on non-porous than porous materials. For example, blood was better documented on curtain airbags than side or driver airbags. Blood and
Boysen, KevinParenteau, ChantalToomey, DanielGregg, Richard H.
In radiography testing, the radioactive elements Iridium 192 (Ir192) and Cobalt 60 (Co60) are employed to detect subsurface and inner flaws. These radioactive components are kept secure within the radiation-protected source camera. Despite the fact that the camera is safe, there is a little quantity of radiation that may harm human body cells. In this present study, it restricts radiation emission by placing a lead sheet over the source camera, which absorbs the produced radiation. The innovative concept involves in this present work is to place a manually operated switch near the radiation source to emit radiation
Suresh Balaji, R.Daniel Das, A.Marimuthu, S.Manivannan, S.
An international team of scientists reports a novel technique for a high-brightness coherent and few-cycle duration source spanning seven optical octaves from the UV to the THz
Recent experiments by a team from the West Virginia University focused on how a weightless microgravity environment affects 3D printing using titania foam, a material with potential applications ranging from UV blocking to water purification. ACS Applied Materials and Interfaces published their findings
Corrosion affects all industrial sectors where metals or metal alloys are used in their structures. In the automotive industry, the continuous search for lightweight parts has increased the demand for effective corrosion protection, in order to improve vehicle performance without compromising durability and safety. In this scenario, coatings are essential elements to preserve and protect vehicle parts from various environmental aggressions. Automotive coatings can be classified into primers, topcoats, clearcoats, and specialty coatings. Primers provide corrosion resistance and promote adhesion between the substrate and topcoat. Topcoats provide color, gloss, and durability to the coating system, while clearcoats enhance the appearance and durability of the finish. Specialty coatings provide additional properties, such as scratch resistance, chemical resistance, and UV protection. In addition to these categories, there are the smart coatings, defined as those capable of modifying their
Vanzetto, Andrielen BrazNeves, GuilhermeAlves, Tamires PereiraMoura, João Henriquede Bortoli, Bruna FariasSantana, Leande Oliveira Polkowski, Rodrigo Denizarte
Imagine being able to snap a picture of extremely fast events on the order of a picosecond. Compressed ultrafast photography (CUP) captures the entire process in real time and unparalleled resolution with just one click. The spatial and temporal information is first compressed into an image and then, using a reconstruction algorithm, it is converted into a video
In the coming years, moving towards a hundred percent electric vehicles will be one of the key areas in the automotive industry. The main advantages of using e-mobility are operational flexibility, lower carbon emission and regenerative energy. Thermal management in an e-vehicle plays a vital role for the reliability of the system and any thermal failure can cost a significant amount of money to a company per vehicle. Inverter assembly is widely used to convert Direct Current (DC) to Alternating Current (AC) in the e-mobility platform to operate the motor for vehicle propulsion. It consists of various electronic transmitters, controllers, capacitors, and semi-conductors which will emit an enormous amount of heat during their operation. Since inverters are highly temperature sensitive in nature, it is necessary to improve the temperature distribution in the device. For this reason, adequate cooling system and ventilation is inevitable to keep the components operational. In this study
Govindarasu, AnbarasuT, SukumarSathyamoorthy, GugainamasivayamSubramanian, Vivek
Most space satellites are powered by photovoltaic cells that convert sunlight to electricity. Exposure to certain orbit radiation can damage the devices, degrading their performance and limiting their lifetime. University of Cambridge scientists have proposed a radiation-tolerant photovoltaic cell design that features an ultrathin layer of light-absorbing material
As a new method to examine the extremely unsteady and spatially varying wall heat transfer phenomena on diesel engine combustion chamber wall, high-speed imaging of infrared thermal radiation from the chromium coated window surface impinged by a diesel spray flame has been conducted in a constant volume combustion chamber. The infrared radiation from a back surface of the chromium layer was successfully visualized at 10kHz frame rate and 128 × 128 pixel resolution through the window. The distributions of infrared radiation, temperature and heat flux exhibited coherent and streaky structure with radial stripes extending and waving from a stagnation point likely reflecting the near-wall turbulent structure in a wall impinging diesel flame. The experiments were conducted with various parameters such as fuel injection pressure, ambient gas oxygen concentration, wall impinging distance, wall surface roughness and wall materials. Imaging velocimetry analysis was applied to the movement of
MAHMUD, RizalTAKAHASHI, TatsukiKINOSHITA, HiroyukiSHIMIZU, FumikaNAGANAWA, ArenoMOROOKA, MasatoAIZAWA, Tetsuya
An ingestible x-ray dosimeter detects radiation dose in real time. Combining the novel capsule design and a neural network-based regression model that calculates radiation dose from the information captured by the capsule, researchers found that they could provide approximately five times more accurate monitoring of the dose delivered than current standard methods
Upcoming legislation towards zero carbon emission is pushing the electric vehicle as the main solution to achieve this goal. However, electric vehicles still require further battery development to meet customer’s requirements as fast charge and high energy density. Both demands come with the cost of higher heat dissipation as lithium transport and chemical reaction inside the battery need to be performed faster, increasing the joule effect inside the battery. Due to its working principle, which guarantees an adiabatic environment, an accelerating rate calorimeter is used to study thermal phenomena in batteries like a thermal runaway. However, this equipment is not prepared to work with optical access, which helps to study and to comprehend battery surface distribution and other thermal aspects. This paper aims to show a methodology to correct temperature measurement when using a thermographic camera and optical access of sapphire in an accelerating rate calorimeter. The problem comes
Pastor, Jose V.Micó, CarlosLewiski, FelipeGolke, Diego
Space Dynamics Laboratory Utah State University North Logan, UT 435-713-3400
A wavelength of visible light is about 1,000 times larger than an electron, so the way the two affect each other is limited by that disparity. Now, researchers have come up with a way to make much stronger interactions between photons and electrons possible — in the process producing a hundred-fold increase in the emission of light from a phenomenon called Smith-Purcell radiation
To empirically estimate the radiation of sound sources, a measurement with microphone arrays is required. These are used to solve an inverse problem that provides the radiation characteristics of the source. The resolution of this estimation is a function of the number of microphones used and their position due to spatial aliasing. To improve the radiation resolution for the same number of microphones compared to standard methods (Ridge and Lasso), a method based on normalizing flows is proposed that uses neural networks to learn empirical priors from the radiation data. The method then uses these learned priors to regularize the inverse source identification problem. The effects of different microphone arrays on the accuracy of the method is simulated in order to verify how much additional resolution can be obtained with the additional prior information
Gomes Lobato, Thiago HenriqueSottek, Roland
Community noise at vertiports is one of the most important questions related to upcoming urban air mobility (UAM) operations. While fixed-wing and/or fixed-rotor aircraft can mainly be treated by their changing operational parameters, such as rotor or propeller rpm, tilt-wing or tilt-engine configurations are more difficult to simulate because of their constantly changing noise emission and spatial radiation characteristics. The work presented in this paper is providing an overview of the noise situation at a virtual vertiport which is being approached and departed by a tilt-wing air-taxi in different ways. Several different departure procedures are simulated with the same generic air-taxi. For the noise emission semi-empiric methods were used. During the air-taxi’s descent and climb, different tilt configurations are included, mainly defined by the time dependent engine’s tilt-angle, but also related to different approach paths. Each approach or departure procedure is generating
Bauer, Michael
The author has been conducting research on UV based photocatalytic air purifier systems for the past 5 years to eliminate living organic germs, bacteria, pathogens, etc. from the cabin air. An HVAC system has been developed by using a filter impregnated by titanium di-oxide (TiO2) with UV lights to improve and maintain cabin air quality. The author has designed and constructed a 3rd generation HVAC unit for cabin air purification for automobiles that is based on UV photocatalytic process by using UV-C LEDs to eliminate viruses that typically exist in conditioned space. The author has conducted tests with HVAC unit to determine power consumptions of air purification systems. An HVAC unit that employs a HEPA (high efficiency particulate air filter) filter is compared with the same HVAC unit with UV & titanium dioxide based photocatalytic system. The pressure drops of the HEPA, particulate and TiO2 filters have been investigated that contribute to the overall energy consumption. The
Mathur, Gursaran
Currently the automotive industry has been under extremely important technological changes. Part of these changes are related to the way that users interact with the vehicle and fundamental components are the new digital cluster and screens. These devices have created a disruption in the way information is transmitted to the user, being essential for vehicle operation, including safety. Due to new operating conditions, multiple evaluations need to be performed, one of them is the solar temperature Load to ensure correct operation without compromising user safety. This test is required to identify the thermal performance on the screens mounted on the instrument panel. The performance identification is performed on both sides, analytical and physical. In regards finite element simulation it represents the solar chamber as the main source of heat and being the main mechanism of transmission the radiation. To model this boundary conditions, Taitherm® Software [1] is used, and it allows to
Alonso, LilianaSaavedra, Oscar
In relative terms, graphene has the highest level of heat and electrical conductivity, protects against ultraviolet rays, and is the strongest material ever measured. These properties have made graphene an attractive potential material for a variety of applications, particularly for transportation-related uses, and especially for automotive engineering. The goal of drastically reducing greenhouse gas emissions has prioritized the electrification of transportation, the decarbonization of industry, and the development of products that require less energy to make, last longer, and are fully recyclable. The Role of Graphene in Achieving e-Mobility in Automotive Applications reviews the current state of graphene-related automotive applications, it also identifies the technological challenges facing engineers that look to benefit from graphene’s attractive properties. Click here to access the full SAE EDGETM Research Report portfolio
Barkan, Terrance
The electromagnetic compatibility problem of the permanent magnet synchronous motor (PMSM) has become increasingly prominent with its continuous development to high power and high torque. To solve this problem, this paper adopts a method based on the establishment of body structure and windings of the PMSM to analyze its electromagnetic radiation (EMR). The radiation stimulus source is acquired by establishing the control model of the PMSM drive system under different driving conditions in Simulink and Carsim. The EMR model of the whole vehicle is established in FEKO by creating winding models and importing three-dimensional (3D) mesh models of the vehicle body and PMSM. The field circuit co-simulation and transmission line method are used in this paper. Finally, we can obtain the electric field radiation strength at different detection points under different driving conditions. The simulation results correspond with the EMR theory and electromagnetic shielding theory. It plays a
Chen, LuhaoXu, ZhaopingLiu, Liang
Advanced two-dimensional (2D) materials discovered in the last two decades are now being produced at scale and are contributing to a wide range of performance enhancements in engineering applications. The most well-known of these novel materials is graphene, a nearly transparent nanomaterial comprising a single layer of bonded carbon atoms. In relative terms, it has the highest level of heat and electrical conductivity, protects against ultraviolet rays, and is strongest material ever measured. These properties have made graphene an attractive potential material for a variety of applications, particularly for transportation related uses, and especially for aerospace engineering. The Role of Graphene in Achieving e-Mobility in Aerospace Applications reviews the current state of graphene-related aerospace applications and identifies the technological challenges facing engineers that look to benefit from graphene’s attractive properties. Click here to access the full SAE EDGETM Research
Barkan, Terrance
Radiation shielding for space as well as some terrestrial applications is challenging due to the wide variety and energy ranges of radiation particles. NASA Ames has developed a novel technology that provides a new process for designing and accurately tuning radiation shields to possess the specific characteristics required for each application before testing, reducing the need for iterative radiation beam testing throughout the development process
This paper takes the single-phase full-bridge power converter of the power generation system of the free-piston engine of the incremental electric vehicle (EV) as the research object. By establishing the three-dimensional (3D) electromagnetic radiation simulation model of the power converter, the electromagnetic radiation field of the power converter is simulated and analyzed by using the equivalent excitation source method. The shielding and suppression effect of the power converter shell on the far-field radiated electromagnetic field and its influence on the internal electromagnetic field are analyzed. The shielding cover of the radiation source and sensitive source of the power converter is designed, and the effectiveness of the electromagnetic radiation shielding device for shielding the radiation source and sensitive source is discussed. The simulation results show that the shell of the power converter can effectively shield the far-field radiation so that the external radiation
Zhao, LiaoXu, ZhaopingLiu, Liang
Astronauts who spend six months in space are exposed to roughly the same amount of radiation as 1,000 chest X-rays. Having multiple kinds of radiation bombard their bodies puts them at risk for cancer, central nervous system damage, bone loss, and some cardiovascular diseases. NASA funded research into a new method for measuring radiation damage to humans. Now, 19 years later, that fundamental science supports a diagnostic test to improve cancer treatment on Earth, called the OncoMate MSI Dx Analysis System
Light detection ranging (LiDAR) is commonly used to make high-resolution maps by using ultraviolet, visible, or near-infrared light to image objects. It can target a wide range of materials, with many applications, such as in surveying and accident reconstruction. LiDAR-like systems combine laser-focused imaging with the ability to calculate distances by measuring the time for a signal to return using various electronic sensors. LiDAR data capturing has been conducted and verified from many types of equipment manufacturers, however, little research has compared the FARO Terrestrial Laser Scanner and the LiDAR sensor of an iPad Pro. This study compares these two types of equipment addressing ease-of-use, effectiveness, and cost; where the Terrestrial Laser Scanner will be the control for this study. A statistical evaluation was performed of LiDAR data acquired from nine damaged vehicles and one undamaged vehicle. The damaged vehicles varied in damage condition, color, and configuration
Rodriguez, ColtenJahan, EftekharReyes, MichaelGill, RussellMulhern, Gregory
This test method specifies the operating conditions for a fluorescent ultraviolet (UV) and condensation apparatus used for the accelerated exposure of various automotive exterior components
Textile and Flexible Plastics Committee
Rice University photonics researchers have created a potentially disruptive technology for the ultraviolet optics market
The GPS Radio Occultation and Ultraviolet — Colocated (GROUP-C) experiment was originally conceived in 2010 as a CubeSat mission, combining a compact GPS occultation receiver and high-sensitivity far-ultraviolet (FUV) photometer experiment to be flown as a Space Test Program experiment. The concept was to incorporate a commercial off-the-shelf GPS receiver and a small second-generation FUV photometer to replicate the space weather portion of the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC/FORMOSAT-3) mission at lower cost. In the same timeframe, the Air Force Space and Missile System Center initiated the Space Environment NanoSatellite Experiment (SENSE) to demonstrate several CubeSat technologies for space environment sensing, which included the Compact Tiny Ionospheric Photometer (CTIP) and the Compact Total Electron Content Sensor (CTECS
Engineers have created a deep-ultraviolet (UV) laser using semiconductor materials that show great promise for improving the use of UV light for sterilizing medical tools, among other applications. The aluminum gallium nitride-based device is capable of emitting a deep-UV laser at sought-after wavelengths and modal line widths. The team used molecular beam epitaxy, a crystal growth technique, to grow a high-quality crystal of aluminum nitride
Titan, Saturn’s largest moon and the only celestial body which is found to have a landmass composed of liquid hydrocarbons. Nitrogen - The building block of all life that exists on earth is found to be abundant in Titan’s atmosphere of up to 97%. Aerobots provide a great platform for exploring a celestial body with an atmosphere such as Titan. They have modest power requirements, longer mission duration, and can cover a longer distance in a shorter time. They are powered by a Radioisotope Thermoelectric Generator for optimal mission life. Aerobot’s altitude can be altered by varying the temperature of the air inside the balloon and yaw can be controlled using a Reaction Wheel and a motor-driven propeller for forwarding thrust. The proposed Aerobot will be equipped with four miniature deployable fixed weather stations that can be dropped from the aerobot to Titan's surface. They can be deployed at diverse locations such as the equator and Polar Regions to deeply explore the Titan’s
Raja, Manoj KumarSaravana Mohan, HaribalanThangavel, SabariRaja, VijayanandhGnanasekaran, Raj KumarSivasankaran, Abinash Nataraj
Where the ability to detect mid-wave infrared (MWIR) radiation is mission critical, readiness and the importance of long, maintenance-free infrared (IR) system operation is vital. In turn, cooled MWIR camera modules must be designed, tested, and manufactured to meet rigorous environmental and reliability requirements. This includes military temperature ranges and high shock and vibration levels. Cooled MWIR camera reliability and operational lifetime are typically determined by the operation and lifetime of the cryo-cooler within such systems
The thermal behavior of wires within the electrical distribution system (EDS) has a strong impact on the conductor cross section, the type of insulation, the derating, and the fusing system, and therefore on weight, cost, and reliability. Consequently, significant efforts have been made to develop sound static and dynamic thermal models for single wires and wire bundles. However, these models are based on the simplifying assumption that the object is completely surrounded by air, where, with the exception of free convection, airflow can be neglected, and where no interaction with other objects is considered. The approach presented in this paper takes into account the actual environment and routing within a vehicle, where some objects such as metal sheets can be considered as heat sinks and other objects, e.g. a motor block, as heat sources. For this reason, measurements were performed using an experimental set-up that allows any desired positioning and alignment of the DuT (device
Brabetz, LudwigAyeb, MohamedKoppe, ChristianHesse, Benjamin
The author has been conducting research on UV based photocatalytic air purifier systems for the past 5 years to eliminate living organic germs, bacteria, pathogens, etc. from the cabin air. An HVAC system has been developed by using a filter impregnated by titanium di-oxide (TiO2) with UV lights to improve and maintain cabin air quality. The designed system can be used for conventional vehicles, EVs, ride sharing and for autonomous vehicles. The author has designed and constructed a 3rd generation HVAC unit for cabin air purification for automobiles that is based on UV photocatalytic process by using UV-C LEDs to eliminate viruses that typically exist in conditioned space. The author has conducted tests with the following viruses and bacteria that are typically encountered in a conditioned environment: (i) Staph Epidermititus: Infections in wounds (Anthrax) (ii) Erwinia Herbicola: Bacteria (Infection in soil and water) (iii) MS2: RNA, COVID-19 (iv) Phi-174: DNA, Herpes and HIV (v
Mathur, Gursaran
This SAE Aerospace Standard (AS) specifies the minimum design and performance criteria and testing methods of fire containment covers (FCCs) used either: a In those cargo compartments of civil transport aircraft where they constitute one means of complying with applicable airworthiness regulations, or b On a voluntary basis, when deemed appropriate by operators to improve fire protection in aircraft cargo compartments where airworthiness regulations do not mandate their use
AGE-2 Air Cargo
Renesas Electronics Corporation Milpitas, CA 408-432-8888
This document provides details of test methods that should be taken into consideration when qualifying fiber optic termini to the product specifications (slash sheets). The product specifications (slash sheets) provide pass/fail criteria, optical and physical intermatability, and interoperability requirements for fiber optic termini in circular, rectangular, and modular type aerospace connectors
AS-3 Fiber Optics and Applied Photonics Committee
Items per page:
1 – 50 of 1688