Browse Topic: Clutches
This SAE Recommended Practice describes two-dimensional, 95th percentile truck driver, side view, seated shin-knee contours for both the accelerator operating leg and the clutch operating leg for horizontally adjustable seats (see Figure 1). There is one contour for the clutch shin-knee and one contour for the accelerator shin-knee. There are three locating equations for each curve to accommodate male-to-female ratios of 50:50, 75:25, and 90:10 to 95:5
Cooling system for an IC engine, consisting of the Water pump (WP), Radiator and Fan, plays an important role in maintaining thermal efficiency of the engine and protects the engine from overheating. Based on the vehicle application requirement, Fan will be mounted directly either on Crankshaft or WP pulley. But wherever increase in Fan speed ratio are in demand, it is preferred to mount the Fan on WP pulley. So it important to understand the WP housing structural strength with respect to vibration loads contributed from Radiator Fan assembly. This paper presents investigation of Failure of WP Housing during engine validation at engine test bed with Electronic Viscous Fan, based on the different operating conditions of the engine and fan as per the validation cycle. While the accessories are loading and the corresponding stresses are high when the fan is engaged. But in the current case, the failure of WP housing happened only during Fan clutch disengaged condition. Experimental
Clutch wear is a significant factor affecting vehicle performance and maintenance costs, and understanding its dynamics is crucial for original equipment manufacturers (OEMs) to enhance product reliability and customer satisfaction. It is important to predict clutch wear to enable customers to understand the condition of their clutch and the remaining clutch life, to avoid sudden vehicle breakdowns. This paper explains the approach of measuring the clutch wear profile on an actual vehicle and simulating the same conditions on a powertrain test bench, with the establishment of a correlation in clutch wear profiles
ABSTRACT Thermal management systems (TMS) of armored ground vehicle designs are often incapable of sustained heat rejection during high tractive effort conditions and ambient conditions. The use of a latent heat energy storage system that utilizes Phase Change Materials (PCMs) is an effective way of storing thermal energy and offers key advantages such as high-energy storage density, high heat of fusion values, and greater stability in temperature control. Military vehicles frequently undergo high-transient thermal loads and often do not provide adequate cooling for powertrain subsystems. This work outlines an approach to temporarily store excess heat generated by the transmission during high tractive effort situations through use of a passive PCM retrofit thereby extending the operating time, reducing temperature transients, and limiting overheating. A numerical heat transfer model has been developed based around a conceptual vehicle transmission TMS. The model predicts the
ABSTRACT The following paper describes the new SAPA automatic transmissions for the future military vehicles. The very high mobility requirements, the reclaim of weight, power & space and the actual relevance of the fuel consumption require a rethinking and a new vision of the automatic transmission concept and design. This is what SAPA has been working on for the last 12 years obtaining excellent technical and commercial results, a concept aimed at reducing the power losses of the conventional powershifting transmission eliminating the torque converter, reducing the spin losses -due to hydraulic pumps and friction discs-, and improving vehicle mobility on variable terrain situations as off-road
The purpose of this SAE Recommended Practice is to provide guides toward standard conditions for operating marine hydraulic transmissions where push-pull cable control is applicable. For control cable information see SAE J917
The definitions and illustrations in this SAE Recommended Practice are intended to establish common nomenclature and terminology for automotive transmission one-way clutches
Wysong USA has been manufacturing industrial press brakes, hydraulic shears, and mechanical shears for sheet metal and plastics for nearly 120 years. Like many companies, their motto was “if it ain’t broke, don’t fix it,” so their product had remained essentially the same. But during a customer visit that motto clashed with another company saying, “the customer is always right.” This customer had replaced the dry clutch brake for an oil shear clutch brake that was more accurate. “The customer is always right” won, so Wysong updated their product line and increased accuracy while reducing costs, making it a win all around
In torque converters, a lockup clutch is used for direct torque transfer from the engine to the gearbox. Nowadays, earlier lockup engagement is necessary to reduce fuel consumption. It introduces noise and vibration issues in the transmission that are solved by clutch slipping. However, the clutch experiences much heat because of earlier engagement, which needs to be adequately dissipated by ATF oil. To overcome this issue, multi-plate clutches are commonly used for efficient torque transfer and clutch slipping. On the other side, packaging space for torque converters is reducing at the vehicle level, especially in hybrid vehicles, which reduces the efficient cooling of clutches. So, accurate modeling of clutch slipping is necessary to improve the clutch performance and durability of the product. Clutch slipping is a transient phenomenon that involves conjugate heat transfer and rotational flow modeling. There are different ways to model clutch slipping in CFD simulations. One of the
This paper presents a feedback control strategy to minimize noise during dog clutch engagement in a hybrid transmission. The hybrid transmission contains an internal combustion engine(ICE) and 2 electric motors in P1 and P3 configurations. For efficiency during driving, at high vehicle speeds ICE is connected to wheels, via the dog clutch, hence shifting the vehicle from series to parallel hybrid mode. It is shown by experimental results that if the speed difference between the two sides of the dog clutch is below a certain level the engagement will be without clonk noise. In this paper the designed state feedback Linear Quadratic Integral (LQI) control provides the synchronization torque request to the P1 motor, hence matching the speed of one side of dog clutch with the other under the disturbance from combustion torque of the engine. Normally LQI controllers are tuned by trial-and-error methods, but this paper presents an algebraic approach where the feedback gains of the LQI
The following listed definitions are intended to establish terminology and criteria for describing the various kinds of automotive transmissions. A specific arrangement may be described by a combination of several of these definitions
As a newly designed hybrid transmission, DHT (Dedicated Hybrid Transmission) owns the advantages of compact structure, multi-modes and excellent comprehensive performance. Compared with the traditional add-on hybrid transmission with one single motor, DHT uses one independent generator for engine starting and speed adjusting which can be largely improve the driving performance in the mode changing process. Based on the series-parallel DHT with wet clutch for power coupling, this paper firstly analyses the power coupling clutch device functionalities from the power flow viewpoint under normal and limp home condition. And for the changing process from series to parallel mode, a clutch coordination control strategy is designed by combining generator fast speed adjusting with clutch accurately pressure controlling to fulfill the fast driver intension response and clutch protection. And target torques of power sources are designed by a model-based method and two PID closed-loop algorithms
Items per page:
50
1 – 50 of 1889