Browse Topic: Stratified charge engines

Items (56)
Natural gas (NG) can be compressed to a high pressure of around 200 bar for use in engines and other applications. Compressed natural gas (CNG) contains 87–92% methane (CH4) and has a low carbon-to-hydrogen ratio compared to other hydrocarbon (HC) fuels. Due to this, it can potentially reduce carbon dioxide (CO2) emissions by more than 20% compared to conventional fuels like diesel or gasoline. This makes CNG one of the most environmentally friendly fuels for internal combustion engines (ICEs). To improve the thermal efficiency of ICEs, higher compression ratios (CRs) and leaner combustion are essential. Since CNG is a gaseous fuel, it has several advantages over liquid fuels due to its favorable physical and chemical properties. A few of these advantages are minimal fuel evaporation issues, a low-carbon content in the fuel composition and a high-octane number. The CNG high-octane number allows for a high CR, resulting in higher thermal efficiency and lower emissions. It should be
Ziyaei, SiyamakMazlan, Siti KhalijahLappas, Petros
It is significant for understanding the phenomena in a stratified charge engine and an SI engine with direct injection system to carry out the fundamental research. The experiments were conducted in a constant volume chamber with atmospheric condition. The pre-mixed charge composed of ethylene and air was charged with various equivalence ratio, the second charge with the same composition was injected into the chamber, thereafter, the combustion started by a spark plug. The phenomena were analyzed by use of the experimental results of shadowgraph, [OH] natural emission, pressure history and NOx and UHC in the exhaust gas
Fujimoto, HajimeSenda, JiroSano, M.Azechi, N.Okumi, M.
This SAE Recommended Practice has been set up by Subcommittee 4 of the Off-Road Machinery Technical Committee and is primarily for directional control valves on construction and industrial machinery equipment as referenced in SAE J1116. The purpose is to establish port area to flow relationship and match valve spool eye ends in relation to rated capacity. Port connections are optional for either the 4-bolt split flange connection or the internal straight thread "O" ring connection
CTTC C1, Hydraulic Systems
The development of a cycle simulation model for the jet ignition prechamber stratified charge engine is described. Given the engine geometry, load, speed, air-fuel ratios and pressures and temperatures in the two intakes, flow ratio and a suitable combustion model, the cycle simulation predicts engine indicated efficiency and NO emissions. The relative importance of the parameters required to define the combustion model are then determined, and values for ignition delay and burn angle are obtained by matching predicted and measured pressure-time curves. The variation in combustion parameters with engine operating variables is then examined. Predicted and measured NO emissions are compared, and found to be in reasonable agreement over a wide range of engine operation. The relative contribution of the prechamber NO to total exhaust NO is then examined, and in the absence of EGR, found to be the major source of NO for overall air-fuel ratios leaner than 22:1
Hires, S. D.Ekchian, A.Heywood, John B.Tabaczynski, R. J.Wall, J. C.
Items per page:
1 – 50 of 56