Browse Topic: Spark ignition engines

Items (4,336)
This paper explores the potential of leveraging methanol's knock-resistant properties to facilitate both dual fuel (DF) and spark ignition (SI) operation in retrofitted heavy-duty (HD), high-speed marine engines. The study involves retrofitting an original 6-cylinder 7.15L CI diesel engine with port fuel injection (PFI) of methanol to enable DF operation. Later, the diesel injectors were replaced with six spark plugs allowing SI operation. Notably, efforts were made to minimize adaptations to the existing diesel engine, maintaining the compression ratio (CR) at 17.6:1 and retaining the same turbocharging pressure. This research aims to assess the feasibility of retrofitting conventional HD diesel engines (high CR, large bore) for dual-fuel and SI operation on methanol, with a focus on optimizing engine performance, while preserving key characteristics for HD applications, e.g. high torque and high power density. The high CR required spark retarding to prevent knock at higher loads in
Dejaegere, QuintenBallerini, AlbertoDemiddeleer, SheldonVanderbeken, ThomasBracke, KwintenGyselinck, BenD'Errico, GianlucaVerhelst, Sebastian
During engine idling, the low engine speed, typically from 600 rpm to 800 rpm, together with the low throttle opening angle, makes it challenging for a proper fuel air mixing process. The uneven intake charge distribution and high portion of internal EGR because of the inefficient gas exchange process further make the air fuel ratio unstable, which is challenging for a robust ignition and combustion process. In this paper, the challenge of achieving proper combustion phasing while maintaining acceptable combustion stability is investigated, and a specially designed common-coil pack was utilized to improve engine idling performance by supplying prolonged ignition duration and elevated discharge current amplitude. The common-coil pack, which comprises three parallel connected ignition coils, was shared by all 4 cylinders of the engine. The ignition strategy shows the capability to advance the combustion phasing for higher IMEP output, while maintaining the combustion stability, and
Yu, XiaoChen, GuangyunQian, JinLeblanc, SimonWang, LinyanZheng, Ming
Decarbonized or low carbon fuels, such as hydrogen/methane blends, can be used in internal combustion engines to support ambitious greenhouse gas (GHG) emission reduction goals worldwide, including achieving carbon neutrality by 2045. However, as the volumetric concentration of H2 in these fuel blends surpasses 30%, the in-cylinder flame propagation and combustion rates increase significantly, causing an unacceptable increase in nitrogen oxides (NOx) emissions, which is known to have substantial negative effects on human health and the environment. This rise in engine-out NOx emissions is a major concern, limiting the use of H2 fuels as a means to reduce GHG emissions from both mobile and stationary power generation engines. In this study, an experimental investigation of the combustion performance and emissions characteristics of a 4th generation Tour split-cycle engine was undertaken while operating on 100% methane and various hydrogen/methane fuel blends (30%, 40%, and 50% by volume
Bhanage, PratikCho, KukwonAnderson, BradleyKemmet, RyanTour, GiladAtkinson, ChrisTour, HugoTour, Oded
In a conventional cam-based valve actuation system, the valve events are tied up with the rotation of the crankshaft. In contrast, the electronic variable valve actuation (VVA) system enables flexible control of valve events independent of the crankshaft rotation. The present article discusses the development and control system design of a single-acting electro-pneumatic variable valve actuation (EPVVA) system that can be retrofitted to a conventional SI engine. The EPVVA system utilizes fast switching solenoid valves which modulate the flow of pressurized air in and out of a pneumatic chamber. The control system design is conducted in MATLAB Simulink platform using model-based approach. The valve actuator model is formulated such that it simulates the trajectory of the motion of the engine valve by numerically integrating a set of coupled differential equations that govern the thermo-fluid-dynamics and applied mechanics aspects of the valve actuation of the EPVVA system. The timings
Satalagaon, Ajay KumarGuha, AbhijitSrivastava, Dhananjay Kumar
Most of the power produced by manufacturing industry in the United States is via combined heat and power (CHP) systems, with most CHP installations using reciprocating internal combustion engines (RICE). RICE CHP systems offer several advantages, such as low installation and operational costs, high performance, load flexibility, and adaptability to various applications spanning from kilowatt to megawatt scales. Noble Thermodynamic Systems' (NTS) core technology, the Argon Power Cycle (APC), is a revolutionary, new power generation system that boosts the efficiency of RICE CHP generation systems while emitting zero greenhouse gasses or producing zero air pollutants, including nitrogen oxides (NOx). The APC uses the noble gas argon, a monatomic gas, which dramatically increases the specific heat ratio of the working fluid, resulting in a significantly higher ideal Otto cycle efficiency. The APC presents a promising solution to reach a carbon-neutral future for the energy needs of pivotal
Sharma, EshanKim, JoohanStrickland, TylerScarcelli, RiccardoBeardsell, GuillaumeNilsen, ChristopherSierra Aznar, Miguel
A multi-dimensional model of the spark ignition process for SI engines was developed as a user-defined function (UDF) integrated into the commercial engine simulation software CONVERGE CFD. The model presented in this paper simulates energy deposition from the ignition circuit into the fuel-air mixture inside the cylinder. The model is based on interaction and collision between electrons in the plasma arc and the gas molecules inside the cylinder using parameters from the ignition circuit and gas inside the cylinder. Full engine simulations using CONVERGE CFD with the developed ignition model including the ignition circuit model, arc propagation model, and energy deposition model were performed to evaluate the validity and performance of the model and to compare with the ignition model provided by CONVERGE CFD. A low turbulent port fuel injected single-cylinder CFR engine was used for comparison. Continuous multi-cycle RANS simulations showed cycle-to-cycle variations. The range of the
Kim, KyeongminHall, MatthewJoshi, SachinMatthews, Ron
Pre-chamber (PC) technology has demonstrated its capability to achieve clean and stable combustion in internal combustion engines (ICEs) under lean conditions. This study evaluates the effectiveness of PC in direct injection (DI) hydrogen (H2)-ICEs compared to conventional spark ignition (SI) operation using high-fidelity computational fluid dynamics simulations across a range of load conditions. Various loads were attained by systematically adjusting intake pressure and injected H2 mass. The primary hypothesis posits that highly turbulent PC jets facilitate rapid mixing and combustion of ultra-lean mixtures. The comparative analysis revealed that DI fueling in both PC and SI modes did not achieve perfectly homogeneous mixtures, particularly under high load conditions, although PC slightly enhanced mixture uniformity. Combustion behavior exhibited a non-monotonic trend, with SI outperforming PC at low and high loads, while PC demonstrated superior performance at medium loads despite
Menaca, RafaelLiu, XinleiMohan, BalajiCenker, EmreAlRamadan, AbdullahIm, Hong
The paper presents novel studies on the electrical-to-thermal energy deposition to gas at different phases of a spark. The experiments utilized a 10.9 milliliter custom-built spark calorimeter. The energy transfer efficiencies across spark phases—breakdown+arc, and glow are quantified, emphasizing their importances in ensuring robust ignition. An AC capacitive ignition system was considered in the experiments. The spark plugs used in the experiments were of dual-nickel standard J-gap design of a fixed electrode gap. Test results show the breakdown+arc phases are highly efficient in converting electrical to thermal energy, crucial for ignition. The glow phase, offering control flexibility, is found to be less effective in energy transfer from spark to gas. In addition, a maximum threshold for both glow current and duration is found. Exceeding the threshold reduces the net energy deposition to the gas, indicating an increase in thermal energy losses, primarily to the spark plug
Saha, AnupamTunestal, PerAengeby, JakobAndersson, Oivind
Nowadays, hydrogen (H2) is rising as a key solution to fuel internal combustion engines (ICE) since it allows carbon free combustion process. At the same time, ICE fueled with H2 can reach similar performance and driving experience of gasoline fueled ones. In stoichiometric conditions, hydrogen shows higher flame speed, lower ignition energy and lower quenching distance than gasoline. Mainly for these reasons, H2 combustion is characterized by a high risk of abnormal combustion (i.e. knock and pre-ignition), relevant NOx emissions and high heat losses. On the other hand, the wide flammability range and high combustion stability of H2 allow the use of different techniques to reduce combustion reactivity. This work presents a combined approach, experimental and numerical, to assess the benefits of three mixture dilution methods. The experimental campaign, in different operating conditions, was carried out on a production derived high specific power gasoline Single Cylinder Engine (SCE
Tonelli, RobertoMedda, MassimoGullino, FabrizioSilvestri, NicolaZaffino, FrancescoMariconti, RobertoRossi, Vincenzo
The current leading experimental platform for engine visualization research is the optical engine, which features transparent window components classified into two types: partially visible windows and fully visible windows. Due to structural limitations, fully visible windows cannot be employed under certain complex or extreme operating conditions, leading to the acquisition of only local in-cylinder combustion images and resulting in information loss. This study introduces a method for reconstructing in-cylinder combustion images from local images using deep learning techniques. The experiments were conducted using an optical engine specifically designed for spark-ignition combustion modes, capturing in-cylinder flame images under various conditions with high-speed cameras. The primary focus was on reconstructing the flame edge, with in-cylinder combustion images categorized into three types: images where the flame edge is fully within the partially visible window, partly within the
Wang, MianhengZhang, YixiaoDu, HaoyuXiao, MaMao, JianshuFang, Yuwen
This work is part of a production-intent program at Cummins to develop a 6.7L direct injection (DI), lean burn H2 spark ignition (SI) engine for medium- and heavy-duty commercial vehicles that are intended to be compliant with global VII criteria pollutants emissions standards. The engine features a low-pressure DI fuel injection system, a tumble-based combustion system with a pent-roof combustion chamber, two-stage boosting system without EGR, and dual overhead cams (DOHC) with cam phasers. The paper focuses primarily on the performance system architecture development encompassing combustion system, air-handling system, and valve strategy. Comprehensive 3D-CFD guided design analysis has been conducted to define the tumble ports, injection spray pattern, and injection strategy to optimize charge homogeneity and turbulence kinetic energy (TKE). In addition, the boosting system architecture and the valve strategy have been thoroughly evaluated through 1-D system-level engine cycle
Liu, LeiZhang, YuQin, XiaoHui, HeMin, XuLeggott, Paul
With the global shift towards sustainable and low-emission transportation, hydrogen-fueled engines stand out as a promising alternative to traditional fossil fuels, offering significant potential to reduce greenhouse gas emissions. This study provides a comprehensive evaluation of the performance and emissions characteristics of a hydrogen-powered heavy-duty compression ignition engine, which has been modified to operate as a Spark Ignition (SI) engine with a high compression ratio of 17:1. The evaluation was conducted across various speeds, loads, and spark timings under ultra-lean combustion conditions. The analysis utilized a modified 6-cylinder, 13-liter Volvo D13 diesel engine, configured to operate in single-cylinder mode with the addition of a spark plug for SI operation. The study examined key performance metrics, including brake thermal efficiency (BTE), power output, and specific fuel consumption, under the selected operating conditions. Emissions profiles for nitrogen oxides
Dyuisenakhmetov, AibolatPanithasan, Mebin SamuelCenker, EmreAlRamadan, AbdullahIm, HongTurner, James
Since the obvious difficulties in realizing a lightweight long-range full electric powertrain, Internal Combustion Engines (ICEs) are still the most suitable solution for heavy-duty mobility. In a fossil fuel free scenario, bioethanol is one of the most interesting alternative fuels. Its high-octane number, high latent heat of vaporization and high laminar flame speed guarantee high performance with reduced pollutant emissions compared to other Spark Ignition (SI) engine fuels. However, ethanol evaporation and corrosivity represent quite serious challenges. This work aims at investigating the actual performance of a heavy-duty turbocharged SI ICE fueled with ethanol at full load and different engine speeds. A 1-D numerical model that includes fuel evaporation sub-models was developed in order to evaluate the engine performance, ensuring ethanol evaporation in each operating condition. The 1-D numerical model was validated through an experimental campaign carried out with the above
Falbo, BiagioPerrone, DiegoCastiglione, Teresa
Ammonia (NH3) is emerging as a promising fuel for longer range decarbonised heavy transport, predominantly due to relative favourable characteristics as an effective hydrogen carrier. This is despite generally unfavourable combustion and toxicity attributes, restricting ammonia’s end use to applications where robust health and safety protocols can always be assured. In the currently reported work, a spark ignited thermodynamic single cylinder research engine was equipped with separate gaseous ammonia and hydrogen port injection fuelling, with the aim of understanding the impact of varied co-fuelling upon combustion, fuel economy and engine-out emissions (and the arising implications upon future emissions after-treatment). Under stoichiometric conditions, the engine could be operated in a stable manner on pure NH3 at low-to-medium speeds and medium-to-high engine loads, with up to ~20% hydrogen (by energy) required at the lowest engine loads. Engine-out NH3 emissions remained relatively
Ambalakatte, AjithGeng, SikaiMurugan, ReeseVaraei, AmirataCairns, AlasdairHarrington, AnthonyHall, JonathanBassett, Michael
This study investigates the ignitability of hydrogen in an optical heavy-duty SI engine. While the ignition energy of hydrogen is exceptionally low, the high load and lean mixtures used in heavy-duty hydrogen engines lead to a high gas density, resulting in a much higher breakdown voltage than in light-duty SI engines. Spark plug wear is a concern, so there is a need to minimise the spark energy while maintaining combustion stability, even at challenging conditions for ignition. This work consists of a two-stage experimental study performed in an optical engine. In the first part, we mapped the combustion stability and frequency of misfires with two different ignition systems: a DC inductive discharge ignition system, and a closed-loop controlled capacitive AC system. The equivalence ratio and dwell time were varied for the inductive system while the capacitive system instead varied spark duration and spark current in addition to equivalence ratio. A key finding was that spark energy
Hallstadius, PeterSaha, AnupamSridhara, AravindAndersson, Öivind
Methanol is one of the most promising fuels for the decarbonization of the off-road and transportation sectors. Although methanol is typically considered an alternative fuel for spark ignition engines, mixing-controlled compression ignition (MCCI) combustion is typically preferred in most off-road and medium-and heavy-duty applications due to its high reliability, durability and high-efficiency. In this paper, methanol MCCI combustion was enabled using ignition improvers and the potential benefits of this approach compared to conventional diesel combustion were investigated. Methanol was blended with 7%vol of 2-ethylhexyl nitrate (EHN) and experiments were performed in a single-cylinder production-like diesel engine with a displacement volume of 0.8315 L and a compression ratio of 16.5:1. The conditions of the ISO 8178 C1 regulatory cycle for off-road engines were tested, and performance and emissions over the cycle were calculated. Methanol MCCI shows 5.3% lower fuel consumption (in
Lee, SangukLopez Pintor, DarioMacDonald, JamesNarayanan, AbhinandhanChan, Adrian
Series hybrid vehicles with internal combustion range extenders are a promising solution for sustainable transportation. In this application, net zero carbon emissions can be achieved using renewable fuels. Fischer-Tropsch-derived e-gasolines/naptha allow for high energy density and safe liquid fuels. However, Fischer-Tropsch naptha fuel derivatives must undergo several processing stages to reach current engine-grade octane ratings, negatively affecting the synthesis's profitability and energy efficiency. Gasoline engine technologies capable of operating with low-octane fuels could allow the adoption of unprocessed Fischer-Tropsch gasoline. The rotary Wankel engine design suits range extenders thanks to its high power-to-size ratio. In this study, the knocking tendency of homogenous charge spark-ignition rotary Wankel engines is numerically assessed through Chemkin-Pro spark-ignition engine zonal model for knock assessment. Rotary Wankel engines are modeled by providing the
Brunialti, SirioVorraro, GiovanniTurner, JamesSarathy, Mani
Ammonia is a carbon-free fuel alternative for the internal combustion engine decarbonization. However, its toxicity and less advantageous combustion characteristics including higher nitrogen-based engine-out emissions have delayed its use in power generation applications. Therefore, the use of a secondary and also carbon-free fuel such as hydrogen was proposed in the literature as a solution to promote and improve ammonia combustion while minimizing any modifications in engine parameters and control strategy that may be required when compared to using conventional hydrocarbon-based fuels. In addition, the higher resistance to autoignition of ammonia can allow operation at higher compression ratios in spark ignition applications, therefore increasing the thermal efficiency. The study presented here used a single-cylinder heavy-duty research engine converted to spark ignition operation to investigate medium load engine operation with ammonia-hydrogen blends in which hydrogen represented
Alvarez, LuisSaenz Prado, StefanyTrujillo Grisales, JuanDumitrescu, Cosmin
The hydrogen internal combustion engine technology, with its potential for almost full carbon emissions reduction and adaptability to a wide range of fossil fuel-based internal combustion engine (ICE) platforms, offers a promising future. However, as with any innovative technology, it also presents challenges, such as abnormal combustion phenomena. These challenges, including intake backfire, which is more common when using port fuel injection (PFI), and pre-ignition in the combustion chamber, which can be experienced with PFI or direct injection (DI), require detailed investigation to understand and optimize the engine’s performance and efficiencies. This study comprehensively investigates the main abnormal combustion events that could happen in a spark ignition (SI) hydrogen engine. It examines both direct and port fuel injection systems and uses high-resolution in-cylinder, intake, and exhaust pressure measurements alongside a suite of fast-response gas analyzers. The study provides
Mohamed, MohamedMirshahi, MiladWang, XinyanZhao, HuaHarrington, AnthonyHall, JonathanPeckham, Mark
In hydrogen-fueled internal combustion engine (H2ICE), there are some ways to reduce nitrogen oxides (NOx) emissions. Using the wide flammability range of hydrogen, such as conducting lean combustion to reduce nitrogen oxides and employing exhaust gas recirculation (EGR), have been adopted. However, challenges exist in terms of load expansion, and due to the absence of high heat capacity of carbon dioxides in the exhaust, EGR also struggles to exhibit significant effects. In such a scenario, there is growing interest in injecting water into the H2ICE as an alternative to augment the EGR effect. In this study, the spark ignition (SI) single-cylinder engine equipped with two direct injectors was used to evaluate the hydrogen and the water dual direct injection combustion system. This system involved the direct injection of hydrogen using a wall-guided gasoline direct injector and the direct injection of water into the combustion chamber using a diesel injector. This approach utilizes the
Kim, KiyeonLee, SeungilKim, SeungjaeLee, SeunghyunMin, KyoungdougOh, SechulSon, JongyoonLee, Jeongwoo
Pre-chamber combustion is an advanced ignition strategy that has been shown to enhance spark ignition (SI) combustion stability in natural gas (NG) engines by providing distributed ignition sites from turbulent jets and enhancing main-chamber turbulence. Pre-chamber combustion has been proven especially advantageous compared to SI in ultra-lean and dilute operating conditions. This work involves experimental investigation of the effects of varying passive pre-chamber nozzle configuration on pre-chamber and main chamber combustion under simulated exhaust gas recirculation (EGR) dilution (0 and 20%) conditions in a heavy-duty, single-cylinder, optically accessible NG engine at stoichiometric fuel-air ratio. Pre-chamber nozzle configurations include four pre-chambers with constant nozzle area to pre-chamber volume ratio (A/V) with different nozzle sizes and orientations and one configuration with larger nozzles. The optical engine is operated in a skip-fire sequence consisting of 18
Dhotre, AkashNyrenstedt, GustavRajasegar, RajavasanthVarma, ArunSingh, SatbirNorthrop, WilliamSrna, Ales
The Standard Test Method for Determination of Benzene, Toluene, and Total Aromatics in Finished Gasolines by Gas Chromatography/Mass Spectrometry, also known as ASTM D5769, identifies aromatic compounds ranging from carbon groups six to twelve (C6-C12). This method provides determination in less than 15 minutes of twenty-three target aromatics, quantification of uncalibrated Indans, as well as C10, C11, and C12 aromatics using extracted ions. In contrast, the Standard Test Method for Determination of Individual Components in Spark Ignition Engine Fuels by 100-MetreCapillary (with Precolumn) High-Resolution Gas Chromatography (ASTM D6730) offers a more comprehensive identification of compounds of multiple classes in gasoline samples also using a mass spectrometer (MS), focusing on aromatics from C6 to C14 for this research. This method uses a standard template of identified fuel components and corrects responses based on theoretical Flame Ionized Detector (FID) hydrocarbon responses
Dozier, JonathanGoralski, SarahGeng, PatReilly, Veronica
Simulated distillation (SimDis) uses wide bore capillary gas chromatography (GC) to provide a detailed volatility profile of blended gasoline. The boiling point distribution from SimDis analysis is correlated to the hydrocarbon contents of spark ignition fuels and provide the resolution necessary to characterize the compositions of the fuel. Recent publications on simulated distillation applied to spark ignition fuel reveal the merits of indexing a gasoline fuel so that it can be correlated to the tendency of particulate emissions from vehicles. With this in mind, SimDis can be a useful and quick tool in assessing the PM-formation potential of market gasolines. Heavy aromatic compounds are compounds identified as having at least 10 Carbons and 1 aromatic ring. These compounds that are present in spark ignition fuels are major contributors to vehicle particulate emissions. These compounds can be found in the higher boiling portion (T70+) of the distillation profiles. As demonstrated in
Goralski, SarahGeng, PatDozier, JonButler, Aron
Active fuel injection into a pre-chamber (PC) promotes high-temperature and highly turbulent jets, which ignite the cylinder gas with a very high exhaust gas recirculation (EGR) ratio, reducing emissions such as NOx. In the present study, two active PC injection strategies were designed to investigate the effect of injected hydrogen mass and PC mixture air-to-fuel equivalence ratio λ on PC combustion, jet formation, and main chamber (MC) combustion. Stoichiometric or rich hydrogen/oxygen mixtures are actively injected into the PC to enhance the combustion processes in the PC and the MC. A three-dimensional numerical engine model is developed using the commercial CFD code CONVERGE. The engine geometry and parameters adopt a modified GM 4-cylinder 2.0 L GDI gasoline engine. The local developments of gas temperature and velocity are resolved with the adaptive mesh refinement (AMR). The turbulence of the flow is computed with the k-epsilon model of the Reynolds-averaged Navier–Stokes (RANS
Yu, TianxiaoLee, Dong EunAlam, AfaqueGore, Jay P.Qiao, Li
The efficiency of combustion has a major impact on the performance and emission characteristics of a spark-ignited LPG (Liquified Petroleum Gas) engine. The shape of the combustion chamber determines the homogeneous charge intake velocity, which is crucial for the turbulent motion that encourages flame propagation and quickens combustion. It need the right amount of compression ratio, charge squish velocity and turbulent kinetic energy to sustain combustion and propel laminar flames. There are a number of names for the motion of the charge within the cylinder: swirl, squish, tumble and turbulence. All of these terms affect how air and fuel are mixed and burned. Piston shape affects in-cylinder motion, which in turn reduces fuel consumption and improves combustion characteristics. The shape of the piston quench zone has a substantial impact on the charge velocity inside the combustion chamber. The impact on charge motion was analyzed using computer modeling using STAR-CD on pentroof
Sagaya Raj, GnanaR L, KrupakaranPasupuleti, ThejasreeNatarajan, Manikandan
Closed-loop combustion control is highly beneficial for improving the efficiency and reducing the emissions of spark ignition internal combustion engines. In this paper, the key parameter (CA50) of closed-loop combustion control and its effect on the combustion and emissions were explored experimentally in a six-cylinder hydrogen enriched compressed natural gas (HCNG) engine. Moreover, the particle swarm optimization (PSO) back propagation neural network (BPNN) algorithm improved by various hybrid strategies was employed for CA50 prediction. The experimental results reveal that CA50 has a significant impact on the combustion characteristics and emissions of the HCNG engine. Meanwhile, statistical analysis illustrates that CA50 follows a normal distribution and has no self-correlation. Considering the one-to-one correspondence between CA50 and the spark timing, it is suitable to select CA50 as the feedback parameter. The simulation results indicate that the CA50 prediction model
Duan, HaoYan, YuRen, XianfengYin, XiaojunWang, JinhuaZeng, Ke
Methanol is an main type clean energy and it taken important part for the future internal combustion engine technology. The Equivalent air-fuel ratio (AFR) is very import for the engine combustion of methanol. And a lot of case the ratio between methanol and gasoline is not the constant number. There are no studies about AFR when fuel ratio is arbitrary in the currently. The AFR changes obviously if the tank was fueled with gasoline by mistake at a methanol spark ignition engine. Emission will be affected heavily at this situation because the AFR of gasoline is 2 times more than methanol. Some fuel trim adaptation error will be detected by engine controller or even the engine will stall if engine controller keep use the previous AFR to do the fuel injection control. The Investigation provide a relevant AFR adaption strategy based on lambda sensor and the fuel pipes configuration. The strategy was proved valid by some simulation cases to reduce lambda disturbance, optimize emission
Liu, YiqiangZhong, JunQian, PengfeiQiao, ZhiweiZhu, DeleiZhong, ShuangleiDong, YanzhaoYu, Xiuju
High-octane gasoline has the potential to improve engine efficiency but has been reported to marginally reduce and even increase vehicle fuel consumption. The objective of this study is to evaluate the fuel-saving effect of high-octane gasoline on series-parallel hybrid electric vehicles (HEVs) under the re-optimized powertrain control, including engine control and energy management. Firstly, a bench test was conducted on a spark ignition engine fueled with three fuels with research octane numbers of approximately 92, 95, and 98, named 92#, 95#, and 98#. Then the engine control parameter (i.e., spark advance) was re-optimized for maximum engine efficiency and acceptable particle number emissions with the knock constraint. Finally, the energy management was re-optimized for a series-parallel hybrid powertrain equipped with the engine. It was found that 95# and 98# even increased vehicle fuel consumption by 0.2% and 0.6% without the re-optimization of powertrain control compared with 92
Tan, GuikunLi, JiLi, YanfeiWang, ChanghuiSun, YuncaiXu, AnzhaoShuai, ShijinXu, Hongming
The combustion performance test under different injection parameters was carried out on an inline 6-cylinder spark-ignition (SI) methanol engine, and the influence mechanism of injection parameters on methanol evaporation, mixing, combustion and emission was revealed through simulation. The results indicate that compared to the low-flow nozzle scheme (14*D0.26), when adopting the high-flow nozzle scheme (16*D0.30), the injection duration is shorter. The evaporation rate of methanol in the intake port is increased, the amount of methanol droplets and wall-attached liquid film in the cylinder is reduced, and the temperature in the cylinder is elevated. Moreover, the changes are more significant under high-load operating conditions. The change in the methanol charge rate during the intake process leads to a slightly higher inhomogeneity of the in-cylinder mixture. The relatively high temperature in the cylinder and the appropriate increase in the mixture concentration on the exhaust side
Zhang, ZhiLiu, HaifengLi, YongzhiChang, WeideShu, ZanqiaoJu, ChengyuanRatlamwala, Tahir Abdul HussainYao, Mingfa
The application of short burn durations at lean engine operation has the potential to increase the efficiency of spark-ignition engines. To achieve short burn durations, spark-assisted compression ignition (SACI) as well as active pre-chamber (PC) combustion systems are suitable technologies. Since a combination of these two combustion concepts has the potential to achieve shorter burn durations than the application of only one of these concepts, the concept of jet-induced compression ignition (JICI) was investigated in this study. With the JICI, the fuel is ignited in the PC, and the combustion products igniting the charge in the main combustion chamber (MC) triggered the autoignition of the MC charge. A conventional gasoline fuel (RON 95 E10) and a Porsche synthetic fuel (POSYN) were investigated to assess the fuel influence on the JICI. Variations of the relative air/fuel ratio in the exhaust gas (λex) were performed to evaluate both the occurrence of the JICI and the dilution
Burkardt, PatrickGünther, MarcoVillforth, JonasPischinger, Stefan
An inwardly-opening pressure swirl injector for direct injection spark ignition engine applications was used in this work for injecting EXXSOL D60 into laboratory gaseous atmospheric conditions into an open chamber. The EXXSOL D60 fluid was used due to its some similar physical properties to Ethanol fuel. Four injection pressures were used in this work: 50 bar, 60 bar, 70 bar and 80 bar and the simulated engine speed was set up in 2000 rpm in all cases using the injector outside the engine. Shadowgraph technique associated to a filming process with a rate of acquisition of 3300 frames per second was used for acquiring the spray images. The spray images were treated running scripts in Matlab software. The scripts were written for this present analysis. The injector used in this work produced hollow cone sprays. With the image treatment performed in Matlab software, the vertical penetration length and the external cone angle were obtained. The main results showed that penetration length
Guzzo, Márcio ExpeditoFonseca, Lucas GuimarãesBaeta, José Guilherme CoelhoFilho, Fernando Antonio RodriguesPujatti, Fabrício José Pacheco
High and ultra-high pressure direct injection (UHPDI) can enhance efficiency gains with flex-fuel engines operating on ethanol, gasoline, or their mixtures. This application aims to increase the engine’s compression ratio (CR), which uses low CR for gasoline due to the knocking phenomenon. This type of technology, involving injection pressures above 1000 bar, permits late fuel injection during the compression phase, preventing auto-ignition and allowing for higher compression ratios. UHPDI generates a highly turbulent spray with significant momentum, improving air-fuel mix preparation, and combustion, resulting in even greater benefits while minimizing particulate matter emissions. This study aims to develop ultra-high-pressure injection systems using gasoline RON95 and hydrated ethanol in a single-cylinder engine with optical access. Experimental tests will be conducted in an optically accessible spark ignition research engine, employing thermodynamic, optical, and emission results
Malheiro de Oliveira, Enrico R.Mendoza, Alexander PenarandaMartelli, Andre LuizDias, Fábio J.Weissinger, Frederico F.dos Santos, Leila RibeiroLacava, Pedro Teixeira
The increasing impacts of the greenhouse effect have driven the need to reduce pollutant emissions from internal combustion engines. Renewable fuels are promising alternatives for emission reduction, and enhancing engine efficiency can further decrease specific emissions. This study explores the development of dual-fuel engines to meet these goals, focusing on dual-fuel combustion in spark-ignition (SI) engines using two different bioethanol and natural gas mixtures. A novel methodology for 1-D predictive combustion simulation in dual-fuel SI engines was developed and implemented in GT-Suite software. The approach involves a straightforward estimation of the laminar flame speed of the fuel mixture and the calibration of turbulent combustion parameters using a genetic optimization algorithm, without the need for complex chemical kinetics models. The results indicate that the proposed methodology can reproduce combustion characteristics, achieving satisfactory outcomes across most tested
Pasa, Giovanni DuarteMartins, ClarissaCota, FilipeDornelles, HenriqueDuarte, ThalesRosalen, RodrigoPujatti, Fabrício José Pacheco
The aim of the present work was to characterize macroscopic spray parameters of a multi-hole direct injection injector for spark ignition engine applications. The geometry, the position of spray boundaries the overall cone angle, the spray vertical penetration and the vertical spray length were evaluated by processing the spray images recorded at 3300 frames per second. The frequency of recording images was suitable for capturing all the spray developments in all tested conditions. The tested fluid was EXXSOL D60 for simulating ethanol spray characteristics due to its similar properties and due to security reasons. The injector was tested outside the engine and into an open acrylic chamber being injected into atmospheric air conditions of the laboratory. The injection pressure was set up in 100 bar and the simulated engine speed were set up in MOTEC ECU in 3000 rpm, 3600 rpm and 4000 rpm. The injection durations were set up in 3,0 ms for 3000 rpm and 2.3 ms for 3600 rpm and 4000 rpm
Guzzo, Márcio ExpeditoFonseca, Lucas GuimarãesDuarte, Thales Henrique RamosBaeta, José Guilherme CoelhoHuebner, RudolfPujatti, Fabrício José Pacheco
This study meticulously examines the ignition coil (IG), a pivotal component in engine operation, which transforms the low voltage from the battery into the high voltage necessary for spark plug electrode flashover, initiating the combustion cycle. Considering the importance of IG coils in engine operation which has a direct impact on the engine performance. Any failure in the IG coils is judged as a critical failure and encompasses severe repercussions. The paper details an investigation into the issue of ‘White Deposition’ on IG coils. White deposit was observed in IG Coils during new model development in bench level durability test. A comprehensive failure analysis was conducted, employing vibration analysis, thermal analysis, and chemical analysis of the white deposits to ascertain the root cause. Subsequent to identifying the root cause, the study elaborated on hardware design enhancements as a solution. These design changes were rigorously tested on engine benches, confirmed for
Patel, Hardik ManubhaiGupta, VineetChand, SubhashKumar, Nitish
The different energy policies and legislations across the globe, unions, or country wise are the key influencer for evaluation of Transport Industry in both advancement of Technologies and Ecosystem development. Accordingly, European Climate law is focusing to achieve net zero greenhouse (or carbon neutral) gas emissions for EU (European Union) countries by 2050. Similarly in India, National Green Hydrogen Mission (NGHM) by Ministry of New and Renewable Energy (MNRE) is aiming for significant decarbonization and to become market leader in Green Hydrogen Transition. Hydrogen is potential fuel for H2-FCEV (Hydrogen Fuel Cell Electric vehicle) and H2-ICE (Hydrogen -Internal combustion Engine) due to its carbon free molecule and other properties. This review paper is focusing on comprehensive study of different aspects of H2- ICE vehicle. Key study areas are mainly Hydrogen (H2) as fuel, Hydrogen Storage System (HSS), H2-ICEs, Hydrogen storge pressure and H2-ICE vehicle architecture. The
Biswas, SanjoyNaik, Amit KumarKashyap, Krishna
This SAE Recommended Practice is applicable to all E/E systems on MD and HD vehicles. The terms defined are largely focused on compression-ignited and spark-ignited engines. Specific applications of this document include diagnostic, service and repair manuals, bulletins and updates, training manuals, repair data bases, under-hood emission labels, and emission certification applications. This document focuses on diagnostic terms, definitions, abbreviations, and acronyms applicable to E/E systems. It also covers mechanical systems which require definition. Nothing in this document should be construed as prohibiting the introduction of a term, abbreviation, or acronym not covered by this document. The use and appropriate updating of this document is strongly encouraged. Certain terms have already been in common use and are readily understood by manufacturers and technicians, but do not follow the methodology of this document. These terms fall into three categories: a Acronyms that do not
Truck and Bus Control and Communications Network Committee
The combustion of hydrogen (H2) as a fuel is attractive due to its zero-carbon nature and combustion-enhancing properties when used to supplement other fuels. However, the challenge of using H2 as a fuel for transportation applications is the difficulty of onboard storage. One solution to this is to crack onboard stored ammonia (NH3) into H2 which can be supplied to the combustion chamber. However, the reforming process is not always 100 % efficient which can lead to the presence of NH3 in the combustion process. The presence of NH3 can influence engine performance, combustion and emissions. Therefore, this experimental study reports the differences in engine performance between H2 and NH3 reformate mixtures (H2/NH3/N2) added to gasoline in a dual-fuel engine setup under both stoichiometric (λ=1.0) and lean-burn (λ>1.0) operating conditions in a spark ignition (SI) engine. In this study, gasoline was used as the main fuel, with the H2 and NH3 reformate blends studied having energy
Yavuz, MustafaWu, MengdaCova-Bonillo, AlexisBrinklow, GeorgeHerreros, JoseTsolakis, Athanasios
For realizing a super-leanburn SI engine with a very-high compression ratio, it is necessary to design a new fuel which could have low ignitability at a low temperature for antiknocking, but high ignitability at a high temperature for some contribution to stable combustion. C2H6 has a very-long ignition delay time at a low temperature, close to that of CH4, but a short ignition delay time at a high temperature, close to that of gasoline. C2H6 also has a laminar burning velocity about 1.2 times higher than that of gasoline. C2H6 addition to gasoline could be a good example of fuel design to improve both combustion stability and antiknocking property. In the present study, the antiknocking effect of adding CH4, C2H6, or C3H8 with the RON of 120, 115, or 112, respectively, to a regular-gasoline surrogate fuel with the RON of 90.8 has been investigated in an SI engine with a stoichiometric mixture. With the energy fraction of the gaseous fuel of less than 0.35, knocking limit CA50 is
Kuwahara, KazunariShimizu, TaiseiOkada, Atsuki
Letter from the Focus Issue Editors
Lakhlani, HardikKumar, VivekWenbin, YuBagga, KalyanGundlapally, SanthoshDi Blasio, GabrieleSplitter, DerekRajendran, Silambarasan
The need to reduce vehicle-related emissions in the great cities has led to a progressive electrification of urban mobility. For this reason, during the last decades, the powertrain adopted for urban buses has been gradually converted from conventional Internal Combustion Engine (ICE), diesel, or Compressed Natural Gas (CNG), to hybrid or pure electric. However, the complete electrification of Heavy-Duty Vehicles (HDVs) in the next years looks to be still challenging therefore, a more viable solution to decarbonize urban transport is the hybrid powertrain. In this context, the paper aims to assess, through numerical simulations, the benefits of a series hybrid-electric powertrain designed for an urban bus, in terms of energy consumption, and pollutants emissions. Particularly a Diesel engine, fueled with pure hydrogen, is considered as a range extender. The work is specifically focused on the design of the Energy Management Strategy (EMS) of the series-hybrid powertrain, by comparing
Nacci, GianlucaCervone, DavideFrasci, EmmanueleLAKSHMANAN, Vinith KumarSciarretta, AntonioArsie, Ivan
Hydrogen engines are currently considered as a viable solution to preserve the internal combustion engine (ICE) as a power unit for vehicle propulsion. In particular, lean-burn gasoline Spark-Ignition (SI) engines have been a major subject of investigation, due to their reduced emission levels and high thermodynamic efficiency. Lean charge is suitable for passenger car applications, where the demand of mid/low power output does not require an excessive amount of air to be delivered by the turbocharging unit, but can difficulty be tailored in the field of high-performance engine, where the air mass delivered would require oversized turbocharging systems or more complex charging solutions. For this reason, the range of feeding conditions near the stochiometric is explored in the field of high-performance engines (20 BMEP), leading to the consequent issue of abatement of pollutant emissions. In this work, a 1D model is applied to the modeling of a four cylinder engine fueled with direct
Marinoni, AndreaMontenegro, GianlucaCerri, TarcisioDella Torre, AugustoOnorati, Angelo
In a context of growing concern for vehicle-related CO2 and pollutant emissions, non-conventional fuels like methanol (CH3OH) represent a valid alternative to fossil fuels to decarbonize the transport sector in a reasonable time. This is mainly due to its lower carbon content than conventional gasoline and diesel. Moreover, methanol can be obtained either from biomass or CO2 capture from the atmosphere, which makes the latter a renewable fuel. Given the possibility of being stored in liquid phase at standard temperature and pressure (STP), methanol is very suitable for Light Duty Vehicles (LDVs), in which the need to contain fuel tank dimensions is relevant. Regarding the deployment of methanol as a fuel, it is not very challenging, as it can be adopted in current production Internal Combustion Engines (ICEs) either in pure form or in blend with other fuels without any significant modifications. Within this context, the present work aims to assess, in both experimental and simulation
Frasci, EmmanueleSementa, PaoloArsie, IvanVaglieco, Bianca Maria
The global push to minimize carbon emissions and the imposition of more rigorous regulations on emissions are driving an increased exploration of cleaner powertrains for transportation. Hydrogen fuel applications in internal combustion engines are gaining prominence due to their zero carbon emissions and favorable combustion characteristics, particularly in terms of thermal efficiency. However, conventional Spark-Ignition (SI) engines are facing challenges in meeting performance expectations while complying with strict pollutant-emission regulations. These challenges arise from the engine's difficulty in handling advanced combustion strategies, such as lean mixtures, attributed to factors like low ignition energy and abnormal combustion events. To address these issues, the Barrier Discharge Igniter (BDI) stands out for its capability to generate non-equilibrium Low-Temperature Plasma (LTP), a strong promoter of ignition through kinetic, thermal, and transport effects. Its surface
Avana, MassimilianoRicci, FedericoPapi, StefanoZembi, JacopoBattistoni, MicheleGrimaldi, Carlo N.
Hydrogen-powered mobility is believed to be crucial in the future, as hydrogen constitutes a promising solution to make up for the non-programmable character of the renewable energy sources. In this context, the hydrogen-fueled internal combustion engine represents one of the suitable technical solution for the future sustainable mobility. In a short-term perspective, the development of the green hydrogen production capability and distribution infrastructure do not allow a substantial penetration of pure hydrogen IC engines. For this reason, natural gas – hydrogen blends can represent a first significant step towards decarbonization, also determining a trigger effect on the hydrogen market development. The present paper is focused on the analysis of the combustion and performance characteristics of a production PFI natural gas engine, run on blends with 15% in volume of hydrogen (HCNG). More specifically, a fuel-flexible, predictive 1D simulation model has been developed within the
Baratta, MirkoDi Mascio, ValerioMisul, DanielaMarinoni, AndreaCerri, TarcisioOnorati, Angelo
The research for sustainable alternative fuels for combustion engines was driven by the urgency to meet future emission regulation norms and mitigate climate change and dependency on fossil fuels. In this context, methanol emerges as a promising candidate due to its potential for greenhouse gas-neutral production methods and its advantageous characteristics for employment in SI engines. Adverse effects, such as elevated emissions due to incomplete combustion along with liner impingement and oil dilution as a consequence of the high injected fuel mass and the large enthalpy of vaporization, can be improved by a dual injection concept. The tests were conducted on a single-cylinder research engine derived from a common passenger vehicle engine. The exhaust gas composition was measured with an FTIR-analyzer employing a methanol-specific evaluation method, standard exhaust gas analyzers, and a solid particle counter system with 10 and 23 μm cut-off sizes. The ratio of DI mass to total mass
Fitz, PatrickFellner, FelixRößlhuemer, RaphaelHärtl, MartinJaensch, Malte
Vibrations in IC engines have a widespread effect on the operations of consumer and commercial vehicles, which not only affect the life and efficiency of the vehicle but also affect user comfort and nervous system of human body. This paper focuses on the comparative analysis of vibration and acoustic characteristics while utilizing fuels such as petrol and CNG. ADXL 335 3-axis accelerometer was employed to measure acceleration vs time data, which was then processed using MATLAB to obtain FFT and PSD plots. These plots thus obtained gave insights on dominating frequency as well as frequencies with maximum energy. Six different cases with different engine speeds and loading conditions are studied with analysis of all the different parameters such as sound pressure levels and mean and max cylinder pressure.
Anasune, Aditya
The present study explores the performance of high-density polyethylene (HDPE) pyrooil and ethanol blends with gasoline in SI engine using statistical modeling and analysis using response surface methodology (RSM) and the Anderson–Darling (AD) residual test. The pyrooil was extracted from HDPE through pyrolysis at 450°C and then distilled to separate the liquid fraction. Two blends were prepared by combining pyrooil and gasoline, and pyrooil–ethanol mixture (volume ratio of 9:1) and gasoline, both at volumetric concentrations ranging from 2% to 8% to evaluate brake thermal efficiency (BTE) and specific fuel consumption (SFC) in a SI engine. An experimental matrix containing speed, torque, and blend ratio as independent variables for both blends were designed, analyzed, and optimized using the RSM. The results show that a 4% blend of pyrooil with gasoline (P4) and a 6% blend of pyrooil–ethanol mixture with gasoline (P6E) were optimum for an SI engine. Also, the experimental findings
Manickavelan, K.Sivaganesan, S.Sivamani, S.Kulkarni, Mithun V.
The current research elucidates the application of response surface methodology to optimize the collective impact of methanol–isobutanol–gasoline blends and nanolubricants on the operational parameters of a spark-ignition engine. Diverse alcohol blends in conjunction with gasoline are employed in engine trials at 2500 rpm across varying engine loads. The alcohol blends exhibit notable enhancements in brake thermal efficiency, peak in-cylinder pressure, and heat release rate. At 2500 rpm and 75% load, the break thermal efficiency of iBM15 surpasses that of gasoline by 33.5%. Alcohol blends significantly reduce hydrocarbon and carbon monoxide emissions compared to gasoline. The iBM15 demonstrates a reduction of 25.2% and 51.12% in vibration along the Z and Y axes, respectively, relative to gasoline. As per the response surface methodology analysis, the optimal parameters are identified: an alcohol content of 29.99%, an engine load of 99.06%, and a nanolubricant concentration of 0.1%. It
Bharath, Bhavin KSelvan , V. Arul Mozhi
Items per page:
1 – 50 of 4336