Browse Topic: Diesel / compression ignition engines

Items (11,444)
In alignment with the International Maritime Organization’s 2023 GHG Strategy and the Paris Agreement, this study investigates the viability of ternary blends of marine diesel, biodiesel, and ethanol as low-emission marine fuels. While previous studies have established the physicochemical behavior and storage stability of such blends, particularly the co-solvency role of biodiesel to prevent phase separation, limited data exists on their combustion performance under engine-relevant conditions. This work addresses this gap through a series of controlled experiments conducted in a Rapid Compression Machine (RCM), which enables the approximate a single-cycle combustion in a compression ignition engine. The tested blends included varying proportions of ethanol (up to 20% in volume) in a blend of fossil fuel with 25% of biodiesel (25%), and their combustion were evaluated across different injection timings. Key performance metrics such as ignition delay, maximum temperature and pressure
Lobato, Maria Letícia CostaSánchez, Fernando ZegarraTicona, Epifanio MamaniPradelle, Renata Nohra ChaarBraga, Sergio LealCoelho, Lucas Dos SantosPradelle, Florian
The activation of the fuel injector affects both engine performance and pollutant emissions. However, the automotive industry restricts access to information regarding the circuits and control strategies used in its vehicles. One way to optimize fuel injections is using piezoelectric injectors. These injectors utilize crystals that expand or contract when subjected to an electric current, moving the injector needle. They offer a response time up to four times faster than solenoid-type injectors and allow for multiple injections per combustion cycle. These characteristics result in higher combustion efficiency, reduced emissions, and lower noise levels, making piezoelectric injectors widely used in next-generation engines, where stricter emission and efficiency standards are required. This study aims to design a drive circuit for piezoelectric injectors in a common rail system, intended for use in a diesel injector test bench. Experimental measurement of voltage was obtained from an
Moreira, Vinicius GuerraSilveira, Hairton Júnior José daMorais Hanriot, Sérgio deEuzébio, Wagner Roberto
X42eq
Assis, GuilhermeSánchez, Fernando ZegarraPradelle, Renata Nohra ChaarBraga, Sergio LealTicona, Epifanio MamaniSouza Junior, JorgePradelle, Florian
The transition to renewable fuels is critical to reduce greenhouse gas emissions and achieve carbon neutrality in the transportation sector. Ethanol has emerged as a promising biofuel for compression ignition (CI) engines due to its renewability and low-carbon profile. However, its low cetane number, high latent heat of vaporization, poor lubricity, and corrosive properties severely limit its auto-ignition capability and durable operation under conventional CI conditions. Building upon previous work using a Rapid Compression Machine (RCM) to assess ignition improvers for ethanol, this study explores a broader range of fuel formulations to enhance ethanol-based combustion. A total of nine blends were prepared, consisting predominantly of hydrated ethanol (50-80% by volume), combined with 5-25% biodiesel and up to 5% of a commercial ignition improvers. The biodiesel component acted both as a co-solvent and as a combustion stabilizer, particularly under cold-start conditions. Tests were
Bacic, Denise AmatoSánchez, Fernando ZegarraTicona, Epifanio MamaniPradelle, Renata Nohra ChaarSantos Coelho, Lucas dosMota, Crislane Almeida Pereira daPradelle, Florian
This study develops deep learning (DL) long–short-term memory (LSTM) models to predict tailpipe nitrogen oxides (NOx) emissions using real-driving on-road data from a heavy-duty Class 8 truck. The dataset comprises over 4 million data points collected across 11,000 km of driving under diverse road, weather, and load conditions. The effects of dataset size, model complexity, and input feature set on model performance are investigated, with the largest training dataset containing around 3.5 million data points and the most complex model consisting of over 0.5 million parameters. Results show that a large and diverse training dataset is essential for achieving accurate prediction of both instantaneous and cumulative NOx emissions. Increasing model complexity only enhances model performance to a certain extent, depending on the size of the training dataset. The best-performing model developed in this study achieves an R2 higher than 0.9 for instantaneous NOx emissions and less than a 2
Shahpouri, SaeidJiang, LuoKoch, Charles RobertShahbakhti, Mahdi
Letter from the Guest Editors
Assanis, DimitrisCho, SeokwonLawler, BenjaminPintor, Dario Lopez
Ammonia (NH3) is a promising energy carrier and a potentially alternative fuel to selected sectors due to its carbon-free nature and its relatively high energy density. However, its low reactivity and slow flame propagation pose significant challenges for a direct use in an internal combustion engine, and stable operation at all engine’s conditions. This study investigates three combustion strategies for utilizing NH3 in an adapted four-cylinder 2 L turbocharged, compression-ignition engine, adapted for spark-ignition (SI) operation. Initially, the engine was tested using pure ammonia as fuel, obtaining high efficiencies and acceptable stability at medium/high loads. Nevertheless, intense combustion instabilities could not be avoided below a minimum load level (which increases with engine speed), making engine operation unfeasible in approximately 30 % of its operating map. To address these limitations, two enhancement strategies are explored: Firstly, hydrogen (H2) doping pre-mixed
Karageorgiou, DimitriosMyslivecek, MatejGaillard, PatrickGomez-Soriano, JosepGonzález-Domínguez, DavidLujan, JoseAlcarria Laserna, Gerardo
As global air traffic is expected to increase significantly in the coming decades, reducing the associated climate impact requires scalable solutions. While alternative propulsion technologies such as electric and hybrid-electric systems might offer long-term potential, their current applicability remains limited due to low energy density, limited range and scalability, and system complexity. Consequently, thermodynamic propulsion systems – such as gas turbines and piston engines – are expected to remain dominant in the medium term. In this context, sustainable hydrocarbon-based aviation fuels represent a practical and necessary solution. Certified sustainable aviation fuel (SAF) pathways are currently approved exclusively for use in gas turbines, with certification standards tailored to turbine-specific requirements. Consequently, fuel properties such as cetane number and evaporation behavior are not included in existing specifications. However, when SAF-kerosene blends are used in
Kleissner, FlorianHofmann, PeterVogd, PhilippVauhkonen, VilleKäkölä, JaanaGreve, Alina
This experimental study compared a blend of diesel–DEE (DEE 40% v/v in diesel) with baseline diesel. This experimental study assesses different fuel injection strategies for controlling the in-cylinder charge stratification, such as single, double, and triple injections. The peak in-cylinder pressure under the partially premixed combustion mode was higher than conventional diesel combustion. Higher in-cylinder pressure with increasing dwell time was observed under triple injections. Retarding pilot injections increased the peak in-cylinder pressure. Conventional diesel combustion mode exhibited the highest brake thermal efficiency and lowest emissions with all injection strategies. A longer dwell time of 12° CA showed higher brake thermal efficiency, nitric oxide, and carbon monoxide emissions, whereas hydrocarbon emissions were lower compared to a shorter dwell time of 6° CA. Hydrocarbon and carbon monoxide emissions increased, but nitric oxide and brake thermal efficiency were
Sonawane, UtkarshaAgarwal, Avinash Kumar
In this study, a Kirloskar TV1 compression ignition engine is put to test using diesel, palm biodiesel (B100), and palm biodiesel–diesel blend (B40D60). Among the tested fuels, engine performance at 75% loading condition with reference fuel diesel showed the highest brake thermal efficiency, brake specific energy consumption, and exhaust gas temperature at 27.78%, 12.96 MJ/kWh, and 335.88°C, respectively. While B100 and B40D60 were observed to give a lower value for the same parameters due to their inferior physiochemical properties. In terms of combustion pressure, mean gas temperature, rate of heat release, and rate of pressure rise, the values observed with B40D60 at 67.39 bar, 1397.76 K, 68.83 J/CAD, and 4.34 bar/CAD, correspondingly are better than B100 due to the presence of diesel. Yet for the same combustion parameters, the values for both the aforementioned fuels are still lower than the results seen with pure diesel fueling. Owing to higher cetane number in comparison to
Balakrishnan, Navaneetha KrishnanChelladorai, PrabhuMuhammad, Syahidah Akmal
This SAE Standard is intended to provide a method to obtain repeatable measurements that accurately reflect true engine performance in customer service. Whenever there is an opportunity for interpretation of the standard, a good faith effort shall be made to obtain the engine’s typical in-service performance and avoid finding the best possible performance under the best possible conditions. Intentional biasing of engine component or assembly tolerances to optimize performance for this test is prohibited.
Engine Power Test Code Committee
Common rail, high-pressure electronic fuel injection is one of the primary technologies enabling high-efficiency and low emissions in modern diesel engines. Most fuel injectors utilize an actively controlled solenoid valve to actuate a needle that modulates the fuel supply into the combustion chamber. The electrical drive circuit for the injector requires extensive development costs, and thus, most designs are proprietary in nature, making it difficult to perform academic studies of the fuel injection processes. This research presents an injector driver circuit to control one or more solenoid injectors simultaneously for research-based injector development efforts. The electrical circuit was computationally modeled and optimized iteratively, and then, electronic hardware was developed to demonstrate control of a Bosch CRIN3 solenoid diesel injector as proof of concept. In addition, the injector performance was quantified by the fuel rate of injection (ROI) profiles obtained in a test
Bogdanowicz, EdwardAgrawal, AjayLemmon, Andrew N.Bittle, Joshua
Alcohol fuels are regarded as a feasible approach to address rising energy demands and reduce the dependency on fossil fuels, with ethanol and methanol emerging as a promising renewable fuel for spark-ignition engines. In this research work, tests were performed on a spark ignition engine altered from a diesel engine that employs ethanol/methanol-gasoline blend as fuel operating under lean conditions. The experiments were conducted at 10.5:1 compression ratio and 1500 rpm under full throttle condition with three fuel blends namely M10 (10% of methanol+ 90% gasoline), E10 (10% of ethanol+ 90% gasoline), E5M5 (5% of each ethanol and methanol+ 90% gasoline). Investigational results reveals that alcohol-gasoline blends displayed low COV of IMEP. Furthermore, the alcohol-gasoline mixtures enhanced the peak in-cylinder pressure owing to improved flame speed and flammability limits. Adopting lean-burn operation and high compression ratio can efficiently improve combustion attributes in an
Devunuri, SureshPorpatham, Dr. E
For the achievement of Net Zero Emission goals, various corporates have started with the planning towards the achievement of short-term goals which are well defined with the implementation of energy conservation and efficiency. In this direction, high cetane diesel is an optimized combination of diesel fuel with higher Cetane Number fortified with Novel & Optimized multi-functional additives (MFAs) formulation for improved performance and specially designed for heavy duty diesel engines & off-highway applications. This innovative concept is based on enhancement of fuel economics by enhancement in fuel combustion, injector cleaning characteristics and reduction of frictional losses. The benefits associated with high cetane diesel include superior cleanliness to keep high pressure diesel injectors clean, better lubricity providing longer injector life, superior combustion leading to lower noise and products formulated for benefits in overall reduction in emissions specially developed for
Kumar, PrashantMayeen, HafizSaroj, Shyamsher
The engine has played a pivotal role in controlling regulated pollutants at the in-cylinder combustion level through strategies such as Direct Injection, Common Rail Systems, and Exhaust Gas Recirculation up to Bharat (CEV/Trem) Stage-III. With the advent of more stringent emission norms, specifically Bharat (CEV/Trem) Stage-IV and V, the importance of Exhaust After-Treatment Systems (EATS) in managing emissions outside the engine has significantly increased. The inclusion of Particulate Number (PN) limits in Bharat (CEV/Trem) Stage-V necessitates the use of Diesel Particulate Filters (DPF), which trap soot particles that must be periodically removed through a process known as regeneration. Regeneration requires elevated exhaust temperatures, typically achieved via exothermic reactions in the Diesel Oxidation Catalyst (DOC), facilitated by diesel fuel addition through external injection or in-cylinder injection strategies. This study investigates both external and in-cylinder injection
Bandaru, BalajiM, BalasubramanianV, ShunmugaG, Senthil KumarMahesh, P
For the diesel engines first designed & developed before 2000s, push-rod type valvetrains with mechanical valve lash adjustment were common. For one such legacy diesel engine, first developed for tractors and now applicated for on road vehicles, having push-rod valvetrain architecture & mechanical valve lash adjustment (Type-5 valvetrain system) with flat follower tappet, integrating HLAs for enhancing the NVH & serviceability presented certain challenges. This paper delves into the challenges faced in the design & development phase of HLA integration project on a four-cylinder diesel engine. For integration of HLA, first, the packaging evaluation of valvetrain assembly was done followed by oil flow assessment and necessary changes in the oil pump and circuit. Then, valve lift profile optimizations were done since the ramp rate & seating velocity requirements are different for valvetrains with mechanical lash and HLAs. Numerous iterations were performed for cam-profile design to
John, Shijino ShajiBagal, Pratik
The growing demand for improved fuel efficiency and reduced emissions in diesel engines has led to significant advancements in power management technologies. This paper presents a dual-mode functional strategy that integrates electrified turbochargers to enhance engine performance, provide boost and generate electrical power. This helps in optimizing the overall engine efficiency. The engine performance is enhanced with boosting mode where the electric motor accelerates the turbocharger independent of exhaust flow, effectively reducing turbo lag and provides immediate boost at low engine speeds. This feature also improves high altitude performance of the engine. Conversely, in generating mode, the electric turbocharger recovers or harvest energy from exhaust gases depending on engine operating conditions, converting it into electrical energy for battery recharging purpose. Advanced control systems enable real-time adjustments to boost pressure and airflow in response to dynamic driving
Borle, ShraddhaPrasad, LakshmiCouvret, SebastienFournier, HugoChenuet, Laurent
Off-highway vehicles (OHVs) in sectors such as mining, construction, and agriculture contribute significantly to global greenhouse gas (GHG) emissions, particularly carbon dioxide (CO₂) and nitrogen oxides (NOₓ). Despite the growth of alternative fuels and electrification, diesel engines remain dominant due to their superior torque, reliability, and adaptability in harsh environments. This paper introduces a novel onboard exhaust capture and carbon sequestration system tailored for diesel-powered OHVs. The system integrates nano-porous filters, solid-state CO₂ adsorbents, and a modular storage unit to selectively capture CO₂ and NOₓ from exhaust gases in real time. Captured CO₂ is then compressed for onboard storage and potential downstream utilization—such as fuel synthesis, carbonation processes, or industrial sequestration. Key innovations include: A dual-function capture mechanism targeting both CO₂ and NOₓ Lightweight thermal-regenerative adsorption materials Integration with
Vashisht, Shruti
Traditionally, off-highway vehicles like tractors and construction machinery have relied on hydraulic, viscous, or fixed fans to meet the cooling demands of diesel engines. These fans draw power from the engine, impacting fuel consumption and contributing to noise levels that affect operator comfort. Recently, the adoption of electric fans in off-highway applications has increased due to their energy efficiency, lower noise, and flexible design. Electric fans can cool various components, such as radiators and condensers, and can be positioned for optimal performance. They are easily selected from established supplier catalogs based on application requirements like machine voltage, fan size, and type. This study explores various fan arrangements, including pusher and puller types, and multiple electrical fan banking based on cooler zones to improve cooling system performance without changing cooler size or specifications. A mathematical flow model was developed for both setups: the
Durairaj, RenganathanDewangan, NitinAnand, KetanBhujbale, Sagar
The Dosing Control Unit (DCU) is a vital component of modern emission control systems, particularly in diesel engines employing Selective Catalytic Reduction technology (SCR). Its primary function is to accurately control the injection of urea or Diesel Exhaust Fluid (DEF) into the exhaust stream to reduce nitrogen oxide (NOₓ) emissions. This paper presents the architecture, operation, diagnostic features, and innovation of a newly developed DCU system. The Engine Control Unit, using real-time data from sensors monitoring parameters such as exhaust temperature, NOₓ levels, and engine load, calculates the required DEF dosage. Based on DEF dosing request, the DCU activates the AdBlue pump and air valve to deliver the precise quantity of diesel exhaust fluid needed under varying engine conditions. The proposed system adopts a master-slave configuration, with the ECU as the master and the DCU as the slave. The controller design emphasizes cost-effectiveness and simplified hardware, and
Raju, ManikandanK, SabareeswaranK K, Uthira Ramya BalaKrishnakumar, PalanichamyArumugam, ArunkumarYS, Ananthkumar
Off-Highway Vehicles (OHVs) — including mining trucks, construction machinery, and agricultural equipment — contribute significantly to greenhouse gas (GHG) emissions and local air pollutants due to their dependence on fossil diesel. Achieving sustainable development goals in off-highway sectors requires transitioning toward alternate fuels that can reduce CO₂, NOₓ, and particulate matter (PM) emissions while maintaining performance and reliability. This paper comprehensively evaluates alternate fuels such as biodiesel, renewable diesel, compressed and liquefied natural gas (CNG/LNG), liquefied petroleum gas (LPG), hydrogen, and alcohol-based blends. Using insights from Service Bulletins, fuel standards, and the Worldwide Fuel Charter, it discusses fuel properties, engine compatibility, operational challenges, sustainability impacts, economic feasibility, safety considerations, and regulatory aspects. Case studies of alternate fuel deployment in OHVs illustrate practical challenges and
Mulla, TosifThakur, AnilTripathi, Ashish
A large number of research studies have raised global concerns about the rapid depletion of traditional energy sources like petroleum. These fuels, being largely non-renewable, are being consumed at a rate much faster than they can be replenished. This growing imbalance between demand and supply has led to fears that, in the near future, the world could face a serious energy crisis if alternative sources are not developed and adopted in time. The use of alternative fuels plays an important role in lowering harmful emissions, including those that contribute to ozone formation and other toxic pollutants. It is a well-established scientific understanding that the continued combustion of fossil fuels is a key driver of global atmospheric warming. As environmental awareness grows, many individuals across the globe believe that shifting toward cleaner and more sustainable fuel sources is essential for protecting and improving the health of our planet. Extensive research is being conducted to
G, ManikandanSubbaiyan, GunasekharanSaminathan, SathiskumarT, KarthiS, GokulJ, Sanmuganathan
Alcohol is being considered as an alternative to traditional fuels for compression ignition engines due to their oxygen content and biomass origin. Although alcohol generally has lower cetane numbers, which makes them more favorable for premixed combustion, they also offer potential for lowering emissions in internal combustion engines, particularly when combined with strategies such as exhaust gas recirculation (EGR). This research focuses on enhancing the performance of a single-cylinder, four- stroke diesel engine by introducing ethanol into the intake port during the intake phase. Diesel and rubber seed biodiesel were used as primary fuels and were directly injected into the combustion chamber. The findings indicated that adding ethanol to rubber seed biodiesel, along with 10% EGR, led to improved brake thermal efficiency and a reduction in NOX emissions. The ethanol injection timing and duration were optimized for effective dual-fuel operation. At full engine load, the highest
Saminathan, SathiskumarG, ManikandanBungag, Joel QuendanganT, Karthi
Requirement for Construction Equipment Vehicles (CEVs) in India is continuously growing due to India’s focus on infrastructure development. Technology in the automotive industry has evolved rapidly in recent times and it is also adding new dimensions to the compliance to Electromagnetic Interference, Susceptibility (EMI/EMC) and Safety. EMC and Safety requirements of CEVs are internationally governed by ISO 13766, Part 1 & Part 2. This paper discusses the significance of each aspect specified in these standards and its applicability. Due to nature of work carried out by construction equipment, there is absolutely no scope for compromise on safety for the same. Although Construction equipment standards are based on automotive standards, there are few additional tests which are part of ISO 13766, Part 1 and 2. This paper explains each aspect with practical case study. It also provides general EMC guidelines and precautions to be followed during design validation and product validation
Yeola, MayurNigade, MaheshMulay, Abhijit B
Stringent European carbon dioxide (CO2) emission regulations have stimulated the development of alternative technologies such as Dual Fuel (DF), which involves partially replacing fossil fuel with a low-carbon alternative. Hydrogen represents an ideal candidate for DF due to its properties, including the absence of carbon, high flame propagation speed, and high diffusivity. This study analyzes the combustion and performance of a 1.0L, naturally aspirated, three-cylinder in-line compression ignition off-road engine with a 17.5:1 compression ratio, originally equipped with a conventional diesel system and modified for diesel-hydrogen dual fuel operation. Three Port Fuel Injectors (PFI) are installed in the intake manifold for hydrogen injection. Additionally, they are strategically positioned to minimize the volume between the intake valve and injector tip. Tests were conducted at a fixed engine speed of 2000 rpm, varying the engine load from 30% to 85% of maximum torque. The diesel
Rossetti, SalvatoreMancaruso, Ezio
Items per page:
1 – 50 of 11444