Simulation of CNG Engine in Agriculture Vehicles. Part 2: Coupled Engine and Exhaust Gas Aftertreatment Simulations Using a Detailed TWC Model

2023-24-0112

08/28/2023

Features
Event
16th International Conference on Engines & Vehicles
Authors Abstract
Content
In more or less all aspects of life and in all sectors, there is a generalized global demand to reduce greenhouse gas (GHG) emissions, leading to the tightening and expansion of existing emissions regulations. Currently, non-road engines manufacturers are facing updates such as, among others, US Tier 5 (2028), European Stage V (2019/2020), and China Non-Road Stage IV (in phases between 2023 and 2026). For on-road applications, updates of Euro VII (2025), China VI (2021), and California Low NOx Program (2024) are planned. These new laws demand significant reductions in nitrogen oxides (NOx) and particulate matter (PM) emissions from heavy-duty vehicles. When equipped with an appropriate exhaust aftertreatment system, natural gas engines are a promising technology to meet the new emission standards. Gas engines require an appropriate aftertreatment technology to mitigate additional GHG releases as natural gas engines have challenges with methane (CH4) emissions that have 28 times more global warming potential compared to CO2. Under stoichiometric conditions a three-way catalytic converter (TWC - stoichiometric combustion) can be used to effectively reduce emissions of harmful pollutants such as nitrogen oxides and carbon monoxide (CO) as well as GHG like methane.
The aim of the present study is to understand the performance of the catalytic converter in function of the engine operation and coolant temperature in order to optimize the catalyst operating conditions. Different cooling temperatures are chosen as the initial device temperature highly affects the level of warm up emissions such that low coolant temperatures entail high emissions. In order to investigate the catalyst performance, experimental and virtual transient engine emissions are coupled with a TWC model to predict tail-pipe emissions at transient operating conditions. Engine experiments are conducted at two initial engine coolant temperatures (10°C and 25°C) to study the effects on the Non-Road Transient Cycle (NRTC) emissions. Engine simulations of combustion and emissions with acceptable accuracy and with low computational effort are developed using the Stochastic Reactor Model (SRM). Catalyst simulations are performed using a 1D catalytic converter model including detailed gas and surface chemistry. The initial section covers essential aspects including the engine setup, definition of the engine test cycle, and the TWC properties and setup. Subsequently, the study introduces the transient SI-SRM, 1D catalyst model, and kinetic model for the TWC. The TWC model is used for the validation of a NRTC at different coolant temperatures (10°C and 25°C) during engine start. Moving forward, the next section includes the coupling of the TWC model with measured engine emissions. Finally, a virtual engine parameter variation has been performed and coupled with TWC simulations to investigate the performance of the engine beyond the experimental campaign. Various engine operating conditions (lambda variation for this paper) are virtually investigated, and the performance of the engine can be extrapolated. The presented virtual development approach allows comprehensive emission evaluations during the initial stages of engine prototype development.
Meta TagsDetails
DOI
https://doi.org/10.4271/2023-24-0112
Pages
15
Citation
Leon de Syniawa, L., Siddareddy, R., Prehn, S., Guenther, V. et al., "Simulation of CNG Engine in Agriculture Vehicles. Part 2: Coupled Engine and Exhaust Gas Aftertreatment Simulations Using a Detailed TWC Model," SAE Technical Paper 2023-24-0112, 2023, https://doi.org/10.4271/2023-24-0112.
Additional Details
Publisher
Published
Aug 28, 2023
Product Code
2023-24-0112
Content Type
Technical Paper
Language
English