Browse Topic: Chokes

Items (59)
Bolted joint is a popular method for assembly of mechanical systems which are typically designed by considering members to be in full contact without initial gap. However, manufacturing imperfections or part tolerances can introduce gaps between members. This initial gap is proven to have an adverse effect on the performance of bolted connection. The gap introduces additional bending moments (B.M.) during tightening operation and affects the loads shared by the threads thereby aggravating thread strip and fatigue performance. The aim of this paper is to provide a robust approach for predicting this premature failure of bolted joint due to initial gaps in assembly. VDI 2230 industry guideline for fastener assessment does not account for bending effect due to initial gap. To address this limitation, a “Coupled Analytical and FEA based” approach is developed to accurately capture initial bending moment and its effect on distribution of loads between the engaged threads. Results with
Kar, TanumoyShaikh, RahilSingh, PunitVerma, Avinash
In this paper, a procedure to obtain the compressor map (pressure ratio vs. mass flow rate) is showed by scaling of the available compressor maps with similar shape and design using scaling theorem. The reason to develop such procedure is that in industrial application, a new compressor map need be developed before the complete geometry and hardware of compressor are known. Such procedure is especially useful for users such as engine or vehicle OEM to quickly select turbocharger compressor independently. The scaling law is used to model the non-dimensional parameters of compressor head coefficient vs. mass flow coefficient. Detail procedure from the non-dimensional parameters to the final compressor performance data are described
Yang, Bo
Tractors in the field are exposed to adverse operating conditions and are surrounded by dust and dirt. The tiny, thin and sharp broken straw and husks surround the system in reaper operation. The tractors which are equipped with air conditioning system tend to show detrimental effects in cooling performance. The compressor trips frequently by excess pressure developed in the system due to condenser clogging and hence cooling performance is reduced considerably. The air conditioning performance reduces due to the clogged condenser located on the top roof compartment of operator’s cabin, which is better design than keeping in front of radiator where clogging happens every hour and customer need to stop the tractor to clean it with specific blower. The present system is designed keeping condenser at the top of the roof where heavy particles won’t reach easily, So, condenser choking/clogging is observed every 2 hours, this makes the operator to perform repetitive cleaning operations with
Singh, GurpreetSrivastava, ShreekantArumugam, PrabhakaranSharma, Rakesh
Migration to BS6 emission norms from BS4 levels involves strenuous efforts involving advanced technology and higher cost. The challenging part is on achieving the stringent emission norms without compromising the engine fuel economy, performance and NVH factors. Selection of hardware and attaining an optimal behaviour is therefore vital. This article focuses on the evaluation of three different configuration of turbochargers for the same engine to meet the BS6 emission norms and performance. The turbocharger samples used measure the same compressor diameter with varying trim ratios. Simulation and testing of turbochargers ensured positive results for confirmation of the system. Parameters like low speed torque, smoke and compressor efficiency were evaluated and analysed for all configurations. The safe limits of surge and choke regions of all the compressors were also studied and verified. Influence of varying compressor trim on the performance and emissions were examined thoroughly in
J, GiftsonMuthusamy, AnbarasuShangar Ramani, VageshBhachchu, GurtejR, SivasubramamanianAnand, MK, Arun
Throttles and wastegates are devices used in modern engines for accurate control of the gas flows. It is beneficial, for the control implementation, to have compact and accurate models that describe the flow behavior. The compressible isentropic restriction is a frequently used model, it is simple and reasonable accurate but it has some issues. One special issue is that it predicts that the choking occurs at too high pressure ratios, for example the isentropic model predicts choking at a pressure ratio of 0.52, while experimental data can have choking at 0.4 or even lower. In this work, experimental data is acquired from throttles tested both in a flow bench and mounted as main throttle on a turbocharged gasoline engine. To analyze the flow behavior several flow characterizations are performed at different throttle openings. For the engine installation a special test procedure is adopted and the results show that the engine and the flow bench give the same characteristic behavior of
Holmbom, RobinEriksson, Lars
Downsizing has nowadays become the more widespread solution to achieve the quest for reaching the fuel consumption incentive. This size reduction goes with turbocharging in order to keep the engine power constant. To reduce the development costs and to meet the ever tightening regulations, car manufacturers rely more and more on computer simulations. Thus developing accurate and predictable turbocharger models functioning on a wide range of engine life cases became a major requirement in industrial projects. In the current models, compressors and turbines are represented by look-up tables, experimentally measured on a turbocharger test bench, at steady point and high inlet turbine temperature. This method results in limited maps : on the one hand the compressor surge line and on the other hand the flow resistance curve behind the compressor. Mounted on an engine, the turbocharger encounters a wider scale of functioning points. Using only the actual compressor and turbine maps in an
Goumy, GuillaumeChesse, PascalPerrot, NicolasDubouil, Rémi
Photonic choke-joint (PCJ) structures for dual-polarization waveguides have been investigated at NASA's Goddard Space Flight Center for use in device and component packaging. This interface enables the realization of a high-performance, non-contacting waveguide joint without degrading the in-band signal propagation properties. The choke properties of two tiling approaches — symmetric square Cartesian and octagonal quasi-crystal lattices of metallic posts — are explored and optimal PCJ design parameters are presented. For each of these schemes, the experimental results for structures with finite tilings demonstrate near ideal transmission and reflection performance over a full waveguide band
Multipath, multistage, erosion-resistant flow control valves have been developed that can sustain the extremely high pressure of deep oil wells. Fitting in the restricted available space and operating using limited power with a long lifetime are challenges for choke valves in the downhole environment of oil wells. These valves must control the flow rate from high-pressure oil reservoirs in the presence of fluids that have non-zero sand concentrations. This design consists of a digitized flow control valve with multipath and multistage pressure reduction structures. Specifically, the valve is configured as a set of parallel flow paths from the inlet to the outlet
Diesel Engines are known for its low fuel consumption coupled with high specific power output. Downsizing the engines with turbocharging and common rail injection technologies are the recent trends in improving the efficiency and performance of diesel engines. It is very challenging to match the torque targets at low speed and power targets at high speed range of a diesel engines due to system hardware limitation. Torque at lower engine speed will improve a greater extent to the drivability of a vehicle. Formation of black smoke is a major problem in lower engine speeds due lack of air availability. The use of variable geometry, two stage turbocharging and four valves per cylinder are some of the solutions which make the task simpler, also involves additional cost and fundamental design changes. At the same time commonly used waste gate turbocharger for boosting the airflow, fails to deliver required air flow at lower engine speeds. We took the challenge of matching a waste gate
Mutta, SurendranathSathiya Narayanan, MGupta, PriyankNandhakumar, KDaithankar, Parag
A key technology for further improving the efficiency of gasoline engines lies in downsizing in combination with turbocharging. Decreasing the engine displacement greatly increases the demands on the turbocharging system. The charging of the engine with a single-stage turbocharger leads to a compromise to fulfill the requirements of the nominal power of the engine and the low-end torque. To avoid the use of complex two-stage boosting systems, it is necessary to increase the pressure ratio and the air flow rate at the same time. The wide speed and airflow range of gasoline engines intensify this trade-off. The use of a variable geometry turbine (VGT), additionally equipped with a wastegate bypass, offers great potential to meet the requirements on the turbine side. The range of stable operation of the compressor is limited by choke at high mass flow rates and surge at low mass flow rates. The variable geometry compressor (VGC) is one promising approach to extend the compressor map. A
Herbst, FabianEilts, Peter
In cold weather conditions, starting and maintaining low speed stability (engine idle RPM) has been difficult for smaller volume (50cc to 200cc) single cylinder engines. In order to improve the cold start ability without causing any inconvenience to user, automatic choke systems (auto-choke) have been employed. These auto-choke systems enrich the fuel-air mixture depending on predefined operating conditions. For Euro III and Bharat Stage IV (India) emission legislations, cold start emissions are very critical. The objective of this study is to investigate the effect of auto-choke systems on CO, HC, NOx and CO2 emissions in addition to studying temperature and light-off characteristics of catalytic converter of a 4-stroke scooter engine. The vehicle was tested on chassis dynamometer to investigate emissions on WMTC and ECE R40 test driving cycles, with and without the auto-choke system. Three durations of auto-choke operations were studied. The experiment was done with and without after
Basrur, SampoornanandaSrinivasan, Pradeep SubramanianSharma, RahulSubramoniam, C
Turbochargers are commonly used in automotive engines to increase the internal combustion engine performance during off design operation conditions. When used, a most wide operation range for the turbocharger is desired, which is limited on the compressor side by the choke condition and the surge phenomenon. The ported shroud technology is used to extend the operable working range of the compressor, which permits flow disturbances that block the blade passage to escape and stream back through the shroud cavity to the compressor inlet. The impact of this technology on a speed-line at near optimal operation condition and near surge operation condition is investigated. A numerical study investigating the flow-field in a centrifugal compressor of an automotive turbocharger has been performed using Large Eddy Simulation. The wheel rotation is handled by the numerically expensive sliding mesh technique. In this analysis, the full compressor geometry (360 deg) is considered. Numerical
Semlitsch, BernhardV, JyothishKumarMihaescu, MihaiFuchs, LaszloGutmark, EphraimGancedo, Matthieu
High-powered motors typically have very low resistance and inductance (R and L) in their windings. This makes the pulse-width modulated (PWM) control of the current very difficult, especially when the bus voltage (V) is high. These R and L values are dictated by the motor size, torque (Kt), and back-emf (Kb) constants. These constants are in turn set by the voltage and the actuation torque-speed requirements. This problem is often addressed by placing inductive chokes within the controller. This approach is undesirable in that space is taken and heat is added to the controller
The 912 engine is a well known 4-cylinder horizontally opposed 4-stroke liquid-/air-cooled aircraft engine. The 912 family has a strong track record: 40 000 engines sold / 25 000 still in operation / 5 million flight hours annually. 88% of all light aircraft OEMs use Rotax engines. The 912iS is an evolution of the Rotax 912ULS carbureted engine. The “i” stands for electronic fuel injection which has been developed according to flight standards, providing a better fuel efficiency over the current 912ULS of more than 20% and in a range of 38% to 70% compared to other competitive engines in the light sport, ultra-light aircraft and the general aviation industry. BRP engineers have incorporated several technology enhancements. The fully redundant digital Engine Control Unit (ECU) offers a computer based electronic diagnostic system which makes it easier to diagnose and service the engine. The modern fuel system consists of two fuel rails and two injectors per cylinder, pressure regulator
Dopona, MichaelFoxhall, NigelDutzler, Christoph
Research on an electrically controlled system which can stably maintain a constant engine speed, while carrying out choke operations using a choke valve when starting the engine, was carried out with the objective of constructing an electrically controlled auto choke system for a general purpose engine that can control both choke mechanism and engine speed with a single motor. Research was also carried out on a mechanism that could drive both the throttle and choke valves with a single motor. First, the throttle valve was fixed in the fully open position and the relationship between the choke valve mechanism and engine speed was analyzed. The relationship between the opening angle of the choke valve and engine speed could be formulated by second order transfer function. However, it became clear that transfer function parameters drastically changed depending on ambient temperature and plug seat temperature. Therefore, instead of using a proportional-integral-derivative (PID) controller
Shimamura, HideakiKasai, AkihitoArai, Tetsuya
A set of computer- program routines has been developed for calculating pressure drops and recoveries of flows through standard venturis, nozzle venturis, and orifices. Relative to prior methods used for such calculations, the method implemented by these routines offers greater accuracy because it involves fewer simplifying assumptions and is more generally applicable to wide ranges of flow conditions. These routines are based on conservation of momentum and energy equations for real nonideal fluids, the properties of which are calculated by curve-fitting subroutines based on empirical properties data. These routines are capable of representing cavitating, choked, non-cavitating, and unchoked flow conditions for liquids, gases, and supercritical fluids. For a computation of flow through a given venturi, nozzle venturi, or orifice, the routines determine which flow condition occurs: First, they calculate a throat pressure under the assumption that the flow is unchoked or non-cavitating
Items per page:
1 – 50 of 59