Browse Topic: Advanced high-strength steels

Items (302)
ABSTRACT Flash® Bainite Processing employs rapid thermal cycling (<10s) to strengthen commercial off the shelf (COTS) steel sheet, plate, and tubing into Ultra Hard 600 Armor, High Hard 500 Armor, and advanced high strength steel (AHSS). In a continuous process, induction technology heats a narrow segment of the steel cross section in just seconds to atypically high temperature (1000-1300°C). Quenching substantially immediately follows. A report by Benet Labs and Picatinny Arsenal, investigating a less mature flash technology in 2011, surmised that the novel flash bainite process for steels has the potential to reduce cost and weight while also enhancing mechanical performance [1]. Receiving five financial grants, the US Dept of Energy has greatly matured flash technology in the last few years and its metallurgical understanding in collaboration with Oak Ridge National Lab and others. DOE has named Flash Bainite as the “SBIR Small Business of the Year” in May 2018 and awarded a Phase 3
Cola, Gary M
ABSTRACT The US Army TARDEC has been researching an alternative to current armor steel that is both tough, and light-weight. The studied alloy is based on the Fe-Mn-Al-C system. This study was conducted to investigate and quantify this alloy’s susceptibility to hot cracking phenomena related to casting and welding. Very little research has been done on general weldability of this alloy system, so the results of these tests will be compared to other high Mn steels, and alloys that have undergone cast pin tear testing. Testing will be conducted utilizing button melting tests, autogenous spot welds, and cast pin tear testing. The cast pin tear testing was conducted to measure this alloys susceptibility to weld solidification cracking. The spot welds were used to quantify the susceptibility of the weld heat affected zone (HAZ) to liquation cracking, as well as to observe the solidification structure of the fusion zone. The testing results showed that the FeMnAl system in its current form
Evans, WilliamRamirez, Antonio J.Sebeck, Katherine
The dissimilar welding of titanium to steel enables the integration of the advantageous properties of both metals, facilitating the design of lightweight, corrosion-resistant, and high-strength multifunctional composite structures. However, significant differences in their thermophysical properties pose substantial technical challenges in practical welding scenarios, necessitating careful selection of process parameters to enhance the quality and performance of the weld joint. This article establishes a support vector machine (SVM) model with laser power, welding speed, and laser spot diameter as independent variables, and the maximum residual stress and minimum yield strength of the weld joint as dependent variables. To improve prediction accuracy, the SVM model is optimized using the beluga whale optimization (BWO) algorithm. Taking the established model as the objective function, the multi-objective salp swarm algorithm (MSSA) is employed to optimize the laser welding process
Zhu, YubinMeng, XiangliZhang, Xinran
Multiple hybrid bead designs were investigated in this study to control the springback on DP780 samples using post-stretching technique. The performance of the four different hybrid bead designs was evaluated by measuring the minimum blank-lock tonnage required to control the springback during a U-channel stamping process. A finite element (FE) model of the U-channel stamping process was developed to simulate the process and predict the minimum blank-lock tonnage required for springback control using each of the hybrid bead designs. It is shown that the developed FE model predicts both the required minimum blank-lock tonnage for post-stretching, and the springback profile, with good accuracy
Nazari, Sobhan T.Zhu, FengMakrygiannis, JohnZhang, JimmyWang, Yu-Wei
A fundamental study on the ductility of high strength steels in crash deformation is carried out to investigate the effect of the local ductility of various materials on automobile crashworthiness, considering the prestrain induced by press forming in the manufacturing process. In this study, a newly developed 980 MPa-grade steels [1], ‘jetQTM’, is investigated to clarify its advantage in term of crashworthiness in comparison with the conventional DP (Dual Phase) and TRIP steels. Quasi-static axial crushing tests are performed to evaluate the crashworthiness of the different types of steel. Based on the experimental results, the effect of the local ductility of high-strength steel on the risk of material fracture is discussed. In this paper, a new bending test method, orthogonally reverse bending, (ORB), is proposed to simulate the fracture that occurs during crash deformation considering press-forming strain. The test method is developed using a combination of the V-bending process
Sato, KentaroSakaidani, TomohiroKomine, ShinsukeWang, FangyiNakagaito, Tatsuya
At the dawn of battery electric vehicles (BEVs), protection of automotive battery systems as well as passengers, especially from severe side impact, has become one of the latest and most challenging topics in the BEV crashworthiness designs. Accordingly, two material-selection concepts are being justified by the automotive industry: either heavy-gauge extruded aluminum alloys or light-gauge advanced high-strength steels (AHSSs) shall be the optimal materials to fabricate the reinforcement structures to satisfy both the safety and lightweight requirements. In the meantime, such a justification also motivated an ongoing C-STARTM (Cliffs Steel Tube as Reinforcement) Protection project, in which a series of modularized steel tube assemblies, were demonstrated to be more cost-efficient, sustainable, design-flexible, and manufacturable than the equivalent extruded aluminum alloy beams as BEV reinforcement structures. Tangent to this comparative study, the present work shed some light on the
Hu, JunSun, YetingYu, MiaoWang, Yu-WeiThomas, Grant
Fracturing in a tight radius during bending is one of the major manufacturing issues in forming Advanced High Strength Steels (AHSS). The study investigated the bendability of AHSS under two forming conditions: bending with and without stretched over the die radius. The bendability was evaluated by conducting modified Bending Under Tension (BUT) test for stretch bending and 90o v bend test for bending without stretch. The study also examined the effect of material properties on the limiting bend ratio. Various strength high strength steels, range from 420 MPa to 1700 MPa tensile strength, were selected in the study. Results indicated that critical radius-to-thickness ratios between the two tests are different but correlated in a relationship which was depicted in the bendability diagram. The map and constitutive relation curve derived from limiting bend ratios identified the multiple bendability (stretched and no-stretch) of each strength grade of test steel, which is recommended as
Shih, Hua-Chu
This SAE Recommended Practice defines various grades of continuously cast high-strength sheet steels and establishes mechanical property ranges. These sheet steels can be formed, welded, assembled and painted in automotive manufacturing processes. They can be specified as hot-rolled or cold-rolled sheet. Furthermore, they can be coated (hot-dipped galvanized, hot-dipped galvannealed, and electrogalvanized) or uncoated. Not all combinations of strength, dimensions and coatings may be commercially available; consult your steel supplier for details
null, null
To meet different target of light-weighting, lower fuel economy, crash safety and emission requirement, advanced high strength steel (AHSS) is commonly used in automotive vehicles and has become popular now a days. AHSS material up-to 1500 MPa is commonly used for structural components and major reinforcement of automotive BIW. Manufacturing of AHSS material requires precise control of chemical composition, and subsequent rolling and heat treatment to get optimum combination of required phases In most of the AHSS material microstructure, martensite is present along with ferrite or other phases. Hot stamp steel with strength level 1500 MPa strength also have martensite phase in microstructure after press hardening. However during heating and cooling cycle in resistance spot welding, martensite phase tempering affects hardness at Heat Affected Zone (HAZ). Softness at HAZ lower downs shear and tensile strength of joint which impacts fatigue properties of the joint and energy absorption
Jain, VikasMisal, SwapnaliPaliwal, Lokesh
This study investigated the influence of high-strength low-alloy steel on the fatigue life of a load-bearing member with a non-load-bearing transverse welded attachment (T-joint). It compared high cycle fatigue data to two fatigue design codes, namely BS 7608 and Eurocode EN 1993-1-9. Different base and filler material combinations of varying material strengths were investigated, resulting in a total of three different specimen configurations. Two material combinations had a high-strength steel (Strenx® 700 MC D) for the base material, with one combination having a matched filler material and the other having an undermatched filler material. The third material combination had a lower-strength steel (S 355 JR AR) for the base material, with a matched filler material. Tensile tests were performed to confirm the base material mechanical properties and weld quality of the manufactured specimens. The investigation showed that there was no significant benefit to using high-strength steel as
Ramsay, Gareth AllanVenter, GerhardBredell, Johann
Outokumpu and collaborators show a possible weight reduction of up to 35% by using high-strength stainless steel in place of carbon steel. The weight of a typical bus could be reduced by up to 35% - more than 1,000 kg (2,205 lbs.) - by using high-strength stainless steel to replace tubular bus-frame elements traditionally manufactured in carbon steel. That is the conclusion of a first-of-its-kind project carried out by stainless-steel manufacturer Outokumpu, together with CAD/CAE solution specialist FCMS, the Munich University of Applied Sciences and RotherCONSULT. Corrosion-resistant stainless steel could offer sustainability combined with reduced maintenance time and costs. In addition, high-strength stainless steel grades have become commercially available that offer significant weight savings. The aim of this project was to examine what that could mean in terms of lower weight and reduced material costs
Schuberth, StefanRother, KlemensPohl, Werner
FEA based simulations are extensively used in automotive industry for improving the product design and reducing the time taken for design and prototyping. FEA based simulations require material data as an input in form of material models. Most commonly used material models for simulation of metallic materials are elastic models and elasto-plastic models, which provide very good correlation till ultimate tensile strength (UTS). For simulation beyond UTS value, elasto-plastic material model has to be used along with material model considering the damage accumulation post UTS. For crash like event in automotive crash, required material models should consider the effect of various stress state conditions (Triaxiality) and strain rate sensitivity of materials along with damage accumulation. In LS Dyna solver, MAT_ADD_EROSION material model (GISSMO) along with MAT_024 is widely used for these applications. This paper will focus on development of GISSMO material model card for advanced high
Mulla, Suhail Mahanmad HanifNemade, SanketVhanaje, Manoj GNigade, Sachin RajendraMahajan, RahulSantosh Jambhale, Medha
The seat frame to be applied to future autonomous vehicles is expected to be rotatable considering various seating configurations. For the rotatable or swivel seat frame, it might be more difficult to secure passenger-related safety performances including seat belt anchorage (SBA) strength than a conventional seat frame because the conventional seat frame has two seat belt anchoring points on the body center pillar whereas those points of the swivel seat frame should be all located within the rotating structures in the seat frame. Since the swivel seat frame adds a structure for rotation, the mass of the swivel seat frame significantly increases compared to the nonrotatable seat frame, which may become an obstacle to reducing the mass of the vehicle. Currently, there are not many cases of mass production of rotating vehicle seats, and there are hardly any reports of mass reduction through advanced steel materials or corresponding numerical safety performance. In this study, the mass of
Kim, Jaehyun
A fundamental study on the ductility of high strength steels under impact deformation is carried out to investigate the effect of the local ductility of various materials on crash performance. In this study, newly developed 980 and 1180 MPa grade steels are investigated to clarify their advantages in term of crash performance compared to conventional DP (Dual Phase) steels. The features of the developed steel, named as jetQ are higher yield strength and higher local ductility due to an optimized microstructure by the quenching and partitioning process (QP) [1, 2]. The bending test according to VDA 238-100 is performed while observing the fracture propagation during the bending test. Fracture strain in the tensile tests is evaluated by a three-dimensional shape measurement technique for the fracture surface. Both three-point bending tests and axial impact tests are performed to evaluate the crashworthiness of different types of steel. The three-point bending test simulates the
Sato, KentaroSakaidani, TomohiroToji, YukiTakajo, ShigehiroPaton, AdrianManuela, IrnichThiessen, Richard
As an engineering approach of balanced complexity and accuracy, the Generalized Incremental Stress-State dependent damage Model (GISSMO) in LS-DYNA® has now been widely adopted by the automotive industry to predict metallic materials’ fracture occurrences in both forming and crashworthiness simulations. Calibration of the nominal GISSMO is typically based on material characterization data along a certain representative material orientation. Nevertheless, many rolled or extruded metallic materials, such as advanced high-strength steel (AHSS) sheets, exhibit accentuated anisotropic fracture behavior, even though, notably, some of these materials show comparatively weak anisotropic plasticity in the meantime. Accordingly, in this work, the deformation and fracture behavior of a selected AHSS grade, Q&P980 steel, was first characterized based on a series of mechanical experiments under simple shear, uniaxial tension, plane strain, and equi-biaxial tension conditions. Then, material models
Hu, JunPan, HaoPavlina, ErikThomas, Grant
New highly ductile AHSS steel grades with tensile strength greater than 980 MPa have been developed with the aim of combining high strength and excellent formability. The new jetQ-Family offers high local and global ductility while still fulfilling standards for resistance towards hydrogen embrittlement and weldability. These improved properties are based on their specifically engineered microstructure, which utilize the TRIP-mechanism in a strengthened matrix. This work shows how the microstructure plays a significant role for the tensile testing as well as hole-expansion. Based on the increased yield strength a better crash performance compared to conventional DP steel grades can be attained. The local ductility is demonstrated with excellent hole expansion ratios and high resistance to sheared edge failure. In combination with improved bending angles and thickness strain at fracture a robust process for manufacturing of components can be achieved. The results are completed by the
Irnich, ManuelaThiessen, RichardPaton, AdrianSato, KentaroToji, YukiMinami, Hidekazu
With the introduction of advanced lightweight materials with complex microstructures and behaviors, more focus is put on the accurate determination of their forming limits, and that can only be possible through experiments as the conventional theoretical models for the forming limit curve (FLC) prediction fail to perform. Despite that, CAE engineers, designers, and toolmakers still rely heavily on theoretical models due to the steep costs associated with formability testing, including mechanical setup, a large number of tests, and the cost of a stereo digital image correlation (DIC) system. The international standard ISO 12004-2:2021 recommends using a stereo DIC system for formability testing since two-dimensional (2D) DIC systems are considered incapable of producing reliable strains due to errors associated with out-of-plane motion and deformation. This work challenges that notion and proposes a simple strain compensation method for the determination of FLCs using a low-cost single
Agha, AkshatAbu-Farha, Fadi
This standard describes a test method for evaluating the susceptibility of uncoated cold rolled and hot rolled Ultra High Strength Steels (UHSS) to hydrogen embrittlement. The thickness range of materials that can be evaluated is limited by the ability to bend and strain the material to the specified stress level in this specification. Hydrogen embrittlement can occur with any steel with a tensile strength greater than or equal to 980 MPa. Some steel microstructures, especially those with retained austenite, may be susceptible at lower tensile strengths under certain conditions. The presence of available hydrogen, combined with high stress levels in a part manufactured from high strength steel, are necessary precursors for hydrogen embrittlement. Due to the specific conditions that need to be present for hydrogen embrittlement to occur, cracking in this test does not indicate that parts made from that material would crack in an automotive environment. Results from this test should be
Metals Technical Committee
Weight reduction and safety are key factors on the automotive market. Lightweight materials have been widely discussed as an alternative to reduce CO2 emissions levels and fuel efficiency. Press-hardened steels (PHS), such as 22MnB5 steel, are known to combine high ultimate strength resistance and low thickness. To improve this correlation, new generations of ultra-high strength (UHS) hot forming steel grades are under development. Once the mechanical properties improve after the hot forming process it is possible to decrease the thickness keeping the same performance. An example is the 37MnB5 steel which has some adjustments in terms of chemical composition, increasing its hardenability and providing a more refined quenched martensite. A simulation study of weight reduction for a body in white (BIW) application will be presented considering a 37MnB5 steel grade. Additionally, some preliminar results of this steel are discussed. The heat treatment, performed in laboratorial scale
Santana, Dr. JessicaGomes Pallu, LucasCurti, GustavoHirota, Frederico
It is a consensus in academia and the industry that 2D digital image correlation (2D-DIC) is inferior to a stereo DIC for high-accuracy material testing applications. It has been theoretically established by previous researchers that the 2D-DIC measurements are prone to errors due to the inability of the technique to capture the out-of-plane motion/rotation and the calibration errors due to lens distortion. Despite these flaws, 2D-DIC is still widely used in several applications involving high accuracy and precision, for example studying the fracture behavior of sheet metal alloys. It is, therefore, necessary to understand and quantify the measurement errors induced in the 2D-DIC measurements. In this light, the presented work attempts to evaluate the effectiveness of 2D-DIC in mechanical testing required for the generation of fracture strain vs. triaxiality curve for sheet metal. This work presents a direct comparison of fracture strains obtained by 2D-DIC and stereo DIC for four
Agha, Akshat
Currently, automotive industries are using Advanced High-Strength Steels (AHSS) sheet grades to achieve key requirements like light weighting and improved crash performance. But forming of AHSS grades becomes key challenge due to its lesser ductility and edge fracturing tendency during forming. In general, most of the automotive components undergoes shearing operations like blanking and punching which affects the edge ductility of the steel. AHSS grades possess limited edge ductility compared with conventional steel grades which results in edge fracturing due to tensile strain during stretch flanging operation. Stretch flange-ability is an important formability characteristic, which aids in material selection to avoid edge fracturing of complex shaped parts. Material with better stretch flange-ability possess better edge ductility and hence perform better in stretch flanging of sheet metal. Various test methods have been developed to predict stretch flange-ability behavior of the steel
Udhayakumar, ThendralarasuPaliwal, LokeshMisal, SwapnaliPonkshe, Shripadraj
This SAE Recommended Practice establishes and defines requirements for grades of continuously cast automotive steel sheet that can be formed, welded, assembled, and painted in automotive manufacturing processes. These sheet steels can be specified as hot-rolled, cold-rolled, uncoated, or coated. Steel sheet can be coated by hot dipping, electroplating, or vapor deposition of zinc, aluminum, or organic compounds. Not all combinations of material types, strength levels, and coating types may be commercially available. Consult your steel supplier for availability
Metals Technical Committee
The importance of true fracture strain was initially highlighted in the context of local versus global formability considerations used in material selection among advanced high strength steels (AHSSs) of similar tensile strength. Inspired by the relative studies, a precedent work compared the fracture strain results via either digital image correlation (DIC) based method or optical fracture surface measurement on different AHSS samples. It concluded that the DIC-based testing results generally underestimated the fracture strain. As a continued study, the present work further analyzed the DIC-based testing procedure and attributed such an underestimation mainly to the volume constancy assumption. Furthermore, this work pointed out that also because of the same assumption, the optical fracture surface measurement to some extent overestimated the fracture strain. Nevertheless, it was also observed that different AHSS grades were affected discrepantly by the two methods. Therefore
Hu, JunThomas, GrantCampbell, Cynthia
Advanced High Strength Steel (AHSS) with high strength and deformation resistance is applied to automotive components and plays an important role in protecting passengers in the event of a crash, as well as contributing to fuel economy improvement by reducing the weight of the car body. However, due to the low ductility of the AHSS, there is an issue about the occurrence of fracture during a vehicle crash. In order to cope with these problems from the early design stage, preliminary verification is made through crash CAE analysis, but a high level of material property definition is required for fracture prediction. To predict fracture, many tests are required to secure the base data for parameter calculation of a complex fracture model, and a lot of physical time is required to verify the model. This paper aimed to semi-automate the material parameter calculation and verification process for efficient and reliable fracture prediction of AHSS. To this end, a user interface program was
Lee, Kang HeeJun, ChulWoongChoi, SunyongLee, KyoungteakLee, Dong YulKim, Dae Young
The automotive industry applies Laser Welded Blanks (LWB) to increase the material utilization and light-weighting of the vehicle structure. This paper introduces a novel tensile testing method to characterize the hardening behavior of the weld material with a digital image correlation (DIC) and apply it as a constitutive hardening model in forming simulations with the LWBs of GEN3 steel. Formability tests under biaxial conditions were performed with LWB of GEN3 steel. Experimental results were correlated with finite element analysis (FEA) predictions that were conducted with and without the weld material model. The results show the weld material model for the LWB improves the accuracy of FEA predictions of both necking failures on the base metal as well as cracking on the weld
Kim, MinkiGu, JiahuiKim, Hyunok
Research and development efforts in the automotive industry have been long focused on crashworthy, durable vehicles with the lowest mass possible as higher mass requires more energy and, thus, causes more CO2 emissions. One way of approaching these objectives is to reduce the total vehicle weight by using higher strength-to-weight ratio materials, such as Advanced High-Strength Steels (AHSS). Typically, as the steel gets stronger, its formability is reduced. The steel industry has been long developing (so-called) third-generation (Gen3) AHSS for the automotive industry. These grades offer higher formability compared to first-generation (Gen1) and cost less compared to the second-generation (Gen2) AHSS. Transformation Induced Plasticity (TRIP)-aided Bainitic Ferrite (TBF) and Quenching and Partitioning (Q&P) steel families are considered to be the Gen3 AHSS. These grades can be cold-formed to more complex shapes, compared with the Gen1 Dual Phase (DP) and TRIP steels at equivalent
Erzincanlioğlu, SametAydiner, TamerAras, FiratÇelik, HafizeBillur, ErenKarabulut, SemihGümüs, Iskender Onder
Body in White (BIW) of an automobile serves as the shell, on which all the components that make up a vehicle, are mounted. The BIW is an assembly of press formed sheet metal components. The sheet metal composition of each component varies based on the form and functionality requirement of that component. The resulting assembly has multiple weld joineries with dissimilar compositions. The weld integrity of the joineries is crucial in maintaining the geometrical and structural integrity of the BIW. The primary welding method used in BIW assembly is Resistance Spot Welding (RSW). The quality of the weld is an outcome of a combination of multiple weld parameters. These parameters are majorly estimated based on the joinery thicknesses and material combinations. Multiple welding and testing iterations are done to fine tune the parameters for an optimum weld joinery. This is a very tedious process which increases the process time of a BIW assembly. This paper studied the impact of critical
Thiruppathi, RSelvam, GanesanKannan, Muniya Goundervoppuru, Naga Sheshank ReddyBaskaran, V
Heat-affected zone (HAZ) softening occurs during the laser welding of many Advanced High-Strength Steels (AHSS) that are used for body-in-white (BIW) of automobiles, leading to degradation in the mechanical properties of the welded joints. The microstructure and mechanical properties of dissimilar laser-welded AHSS comprising of as-received 22MnB5 with dual-phase (DP) steels (DP600, DP800, and DP 1000) were investigated in this study. Welds were made at welding speeds ranging from 1 m/min to 3 m/min. Irrespective of welding speed, the DP600-22MnB5 joints fractured in the base metal (BM) of 22MnB5 during tensile tests. Likewise, welded joints of DP800-22MnB5 and DP1000-22MnB5 made at 1 m/min and 2 m/min failed in the BM; however, at 3 m/min the failure location of these joints shifted to the fusion zone (FZ). The fractured surfaces of all the welded combinations were characterized by optical and scanning electron microscopy (SEM). Based on fracture energy, joints welded at 2 m/min were
Aderibigbe, Isiaka AkanbiPopoola, Patricia AbimbolaSadiku, Rotimi EmmanuelBiro, Elliot
The superior formability and local ductility of the emerging class of third generation of advanced high-strength steels (3rd Gen AHSS) compared to their conventional counterparts of the same strength level offer significant advantages for automotive lightweighting and enhanced crash performance. Nevertheless, studies on the material behavior of 3rd Gen AHSS have been limited and there is some uncertainty surrounding the applicability of developed methodologies for conventional dual-phase (DP) steels to this new class of AHSS. The present paper provides a comprehensive study on the quasi-static and dynamic constitutive behavior, formability characterization and prediction, and the fracture behavior of two commercial 3rd Gen AHSS with an ultimate strength of 1180 MPa that will be contrasted with a conventional DP1180. The hardening response to large strain levels was determined experimentally using tensile and shear tests and then validated with 3-D simulations of tensile tests. In
Noder, JacquelineGutierrez, Jon EdwardZhumagulov, AmirKhameneh, FarinazEzzat, HeshamDykeman, JamesButcher, Cliff
The objective of this study was to assess the formability of two 3rd generation advanced high strength steels (3rd Gen AHSS) with ultimate strengths of 980 and 1180 MPa and evaluate their applicability to a structural B-Pillar for a mid-sized sport utility vehicle. The constitutive behavior including strain-rate effects and formability were characterized to generate the material models for use within AutoForm R8 software to design the B-pillar tooling and forming process. An extended Bressan-Williams instability model was able to deterministically predict the forming limit curves obtained using Marciniak tests. The tooling for the representative B-pillar was designed and fabricated with Bowman Precision Tooling and forming trials conducted for both 3rd Gen steels that had a thickness of 1.4 mm. The 3rd Gen 980 B-pillar was successfully formed in accordance with the predictions of the numerical models while the 3rd Gen 1180 was predicted to have significant failure based upon the in
Gutierrez, Jon EdwardNoder, JacquelinePaker, NeilBowman, JamieZhumagulov, AmirDykeman, JamesMalcolm, SkyeEzzat, HeshamButcher, Cliff
Third generation advanced high strength steels (AHSS) that rely on the transformation of austenite to martensite have gained growing interest for implementation into vehicle architectures. Previous studies have identified a dependency of the rate of austenite decomposition on the amount of strain and the associated strain path imposed on the sheet. The rate and amount of austenite transformation can impact the work hardening behavior and tensile properties. However, a deeper understanding of the impact on toughness, and thus crash performance, is not fully developed. In this study, the strain path and strain amounts were systematically controlled to understand the associated correlation to impact toughness in the end application condition (strained and baked). Impact toughness was evaluated using an instrumented Charpy machine with a single sheet v-notch sample configuration. The instrumented striker provides a load - displacement curve as well as a total impact energy measurement
Hodges, Adam D.Tedesco, SarahAnderson, Shane M.Golem, LindsayHuang, Gang
As the automotive industry increasingly adopts Advanced High Strength Steel (AHSS) for the vehicle light-weighting and crashworthiness, the edge cracking significantly increases in stamping AHSS. Different lab-scale test methods such as the ISO standard hole-expansion test and the half specimen dome test are available to evaluate edge formability. However, none of these lab-scale testing methods emulates production conditions such as various shear clearances, part complexity, and shearing speed associated with the mechanical or hydraulic press operation. To address these limitations of the available testing methods, a new punching and stamping test was developed. This paper introduces the simulation and experimental approach in developing this unique testing method to design the peanut-shaped hole that is sensitive to edge cracking in stamping. Three different sheet materials, DP780, 980 GEN3, and aluminum 6016-T4 were tested to validate the reliability of the newly developed testing
Gu, JiahuiZoller, LauraKim, Hyunok
Tensile behavior of advanced high strength steel (AHSS) grades with strengths up to 980 MPa has been extensively studied. However, limited data is found in literature on the tensile behavior of steels with tensile strengths of the order of 1180 MPa, especially at nominal strain rates up to 500/s. This paper examines tensile flow behavior to fracture of four different 1180 MPa grade steels at strain rates of 0.005/s, 0.5/s, 5/s, 50/s and 500/s using an experimental methodology that combines a servo-hydraulic tester and high speed digital image correlation. Even though the strength increase with the strain rate is consistent between the four different materials, the total elongation increase with the strain rate varies widely. Some insights as to why this occurs from examination of the steel microstructure and variation of retained austenite with strain are offered
Savic, VesnaHector, LouisAlturk, RakanEnloe, Charles
Third generation advanced high strength steels (AHSS) have been developed combining high strength and formability, allowing for lightweighting of vehicle structural components. These AHSS components are exposed to paint baking operations ranging in time and temperature to cure the applied paint. The paint baking treatment, combined with straining induced from part forming, may lead to increased in-service component performance due to a strengthening mechanism known as bake hardening. This study aims to quantify the bake hardening behavior of select AHSS grades. Materials investigated were press hardenable steels (PHS) 1500 and 2000; transformation induced plasticity (TRIP) aided bainitic ferrite (TBF) 1000 and 1200; and dual phase (DP) 1000. The number designations of these grades refer to minimum as-received ultimate tensile strengths in MPa. Paint baking was simulated using industrially relevant times and temperatures from 15 to 60 min and 120 to 200 °C, respectively. Samples were
Blesi, Brandon W.Smith, CharlesMatlock, David K.De Moor, Emmanuel
To evaluate vehicle crash performance in the early design stages, a reliable fracture model is needed in crash simulations to predict material fracture initiation and propagation. In this paper, a generalized incremental stress state dependent damage model (GISSMO) in LS-DYNA® was calibrated and validated for a 780-MPa third generation advanced high strength steels (AHSS), namely 780 XG3TM steel that combines high strength and ductility. The fracture locus of the 780 XG3TM steel was experimentally characterized under various stress states including uniaxial tension, shear, plane strain and equi-biaxial stretch conditions. A process to calibrate the parameters in the GISSMO model was developed and successfully applied to the 780 XG3TM steel using the fracture test data for these stress states. The calibrated GISSMO fracture card for 780 XG3TM steel was then validated in simulations of wedge-bend tests, two notched tensile tests and axial crash tests of octagonal, 12-sided and 16-sided
Chen, GuofeiHuang, LuLink, Todd M.Tyan, TauAekbote, Krishnakanth
Commercially available Generation 3 (GEN3) advanced high strength steels (AHSS) have inherent capability of replacing press hardened steels (PHS) using cold stamping processes. 980 GEN3 AHSS is a cold stampable steel with 980 MPa minimum tensile strength that exhibits an excellent combination of formability and strength. Hot forming of PHS requires elevated temperatures (> 800°C) to enable complex deep sections. 980 GEN3 AHSS presents similar formability as 590 DP material, allowing engineers to design complex geometries similar to PHS material; however, its cold formability provides implied potential process cost savings in automotive applications. The increase in post-forming yield strength of GEN3 AHSS due to work and bake hardening contributes strongly toward crash performance in energy absorption and intrusion resistance. The viability of using cold stamped 980 GEN3 AHSS as a replacement for PHS has often been challenged due to concerns about formability and capability to meet
Pednekar, VasantPereira, AndreBallard, AdamChen, GuofeiKomarivelli, RajmouliLi, Haoming
Developing lightweight, stiff and crash-resistant vehicle body structures requires a balance between part geometry and material properties. High strength materials suitable for crash resistance impose geometry limitations on depth of draw, radii and wall angles that reduce geometric efficiency. The introduction of 3rd generation Advanced High Strength Steels (AHSS) can potentially change the relationship between strength and geometry and enable simultaneous improvements in both. This paper will demonstrate applicability of 3rd generation AHSS with higher strength and ductility to replace the 780 MPa Dual Phase steel in a sill reinforcement on the current Jeep Cherokee. The focus will be on formability, beginning with virtual simulation and continuing through a demonstration run on the current production stamping tools and press
Macek, BryanLutz, Justin
The lightweighting potential brought by advanced high strength steels (AHSS) was studied on automotive exterior panels. The dent resistance was selected as a measure to quantify the lightweighting since it is the most crucial for exterior panels. NEXMET® 440EX and 490EX, which possess both the surface quality and high strength, are evaluated and compared with BH210 and BH240. The denting analysis was conducted first on representative plates with different curvatures to simulate the dented areas on door outer, roof and hood panels. In addition, both 1% and 2% pre-strain and baking scenarios are considered for this plate, which represent the most common situations for exterior panels. The maximal dent load that the plates can sustain was calculated and compared for all those steel grades. Then the dent resistance analysis was conducted on a selected door outer panel. The minimum gauge required to meet the dent resistance performance was obtained. The potential to down-gauge the exterior
Liang, JianyongZhang, JimmyZhu, FengMutschler, RalphWang, Yu-Wei
This paper describes the development of a simplified fracture finite element (FE) model for resistance spot welds (RSW) of ultra-high-strength steel (UHSS) that can be incorporated into large-scale vehicle FE model. It is known that the RSW of UHSS generates two types of fracture modes: heat-affected zone (HAZ) and nugget zone fractures. Lap shear and peeling coupon tests using UHSS sheets found that the different RSW fracture modes occurred at different nugget diameters. To analyze this phenomenon, detailed simulated coupon tests were carried out using solid hexahedral elements. The analytical results revealed that RSW fractures are defined by both the application of plastic strain on the elements and the stress triaxiality state of the elements. A detailed model incorporating a new fracture criteria model recreated the different UHSS RSW fracture modes and achieved a close correlation with the coupon test results. Based on these results, a new simplified fracture model that can be
Kawahara, KoshoKoga, MasatakaArimoto, ShinichiNomura, NorihisaNishimura, Ritsu
The simulation of a crash event in the design stage of a vehicle facilitates the optimization of crashworthiness and significantly reduces the design cost and time. The development of a fracture material card used in crash simulation is heavily dependent on laboratory testing data. In this paper, the experimental characterization process to generate fracture data for fracture model calibration is discussed. A third-generation advanced high strength steel (AHSS), namely the XG3TM steel, is selected as the example material. For fracture model calibration, fracture locus and load-displacement data are obtained using mechanical testing coupled with digital image correlation (DIC) technique. Test coupons with designed geometries are deformed under different deformation modes including shear, uniaxial tension, plane strain and biaxial stretch conditions. Mini-shear, sub-sized tensile, and Marciniak cup tests are employed to achieve these strain conditions. The gage length sensitivity is
Huang, LuShi, MingCrosby, Dan
Items per page:
1 – 50 of 302