Browse Topic: Advanced high-strength steels
The development of advanced high-strength steels has become essential in the production of lightweight, safe, and more economical vehicles within the context of the automotive industry. Among the advanced high-strength steels, complex phase steels stand out, characterized by their high formability and high energy absorption and deformation capacity. Laser welding is a technique that applies laser using high energy density as a heat source. It has the advantages that the high welding speed and low heat input compared to other welding methods cause a decrease in deformation, and the narrow width of the weld bead and heat-affected zone allows for the welding of complex parts that would be difficult for other welding methods. Based on a study of a complex phase steel, an analysis was made of the microstructures observed by optical microscopy, the grain boundaries and certain phases contained in this microstructure, as well as the microstructures of each area in the laser welding region
This SAE Recommended Practice defines various grades of continuously cast high-strength sheet steels and establishes mechanical property ranges. These sheet steels can be formed, welded, assembled and painted in automotive manufacturing processes. They can be specified as hot-rolled or cold-rolled sheet. Furthermore, they can be coated (hot-dipped galvanized, hot-dipped galvannealed, and electrogalvanized) or uncoated. Not all combinations of strength, dimensions and coatings may be commercially available; consult your steel supplier for details.
Outokumpu and collaborators show a possible weight reduction of up to 35% by using high-strength stainless steel in place of carbon steel. The weight of a typical bus could be reduced by up to 35% - more than 1,000 kg (2,205 lbs.) - by using high-strength stainless steel to replace tubular bus-frame elements traditionally manufactured in carbon steel. That is the conclusion of a first-of-its-kind project carried out by stainless-steel manufacturer Outokumpu, together with CAD/CAE solution specialist FCMS, the Munich University of Applied Sciences and RotherCONSULT. Corrosion-resistant stainless steel could offer sustainability combined with reduced maintenance time and costs. In addition, high-strength stainless steel grades have become commercially available that offer significant weight savings. The aim of this project was to examine what that could mean in terms of lower weight and reduced material costs.
This SAE Recommended Practice establishes and defines requirements for grades of continuously cast automotive steel sheet that can be formed, welded, assembled, and painted in automotive manufacturing processes. These sheet steels can be specified as hot-rolled, cold-rolled, uncoated, or coated. Steel sheet can be coated by hot dipping, electroplating, or vapor deposition of zinc, aluminum, or organic compounds. Not all combinations of material types, strength levels, and coating types may be commercially available. Consult your steel supplier for availability.
Advanced High Strength Steel (AHSS) with high strength and deformation resistance is applied to automotive components and plays an important role in protecting passengers in the event of a crash, as well as contributing to fuel economy improvement by reducing the weight of the car body. However, due to the low ductility of the AHSS, there is an issue about the occurrence of fracture during a vehicle crash. In order to cope with these problems from the early design stage, preliminary verification is made through crash CAE analysis, but a high level of material property definition is required for fracture prediction. To predict fracture, many tests are required to secure the base data for parameter calculation of a complex fracture model, and a lot of physical time is required to verify the model. This paper aimed to semi-automate the material parameter calculation and verification process for efficient and reliable fracture prediction of AHSS. To this end, a user interface program was
Research and development efforts in the automotive industry have been long focused on crashworthy, durable vehicles with the lowest mass possible as higher mass requires more energy and, thus, causes more CO2 emissions. One way of approaching these objectives is to reduce the total vehicle weight by using higher strength-to-weight ratio materials, such as Advanced High-Strength Steels (AHSS). Typically, as the steel gets stronger, its formability is reduced. The steel industry has been long developing (so-called) third-generation (Gen3) AHSS for the automotive industry. These grades offer higher formability compared to first-generation (Gen1) and cost less compared to the second-generation (Gen2) AHSS. Transformation Induced Plasticity (TRIP)-aided Bainitic Ferrite (TBF) and Quenching and Partitioning (Q&P) steel families are considered to be the Gen3 AHSS. These grades can be cold-formed to more complex shapes, compared with the Gen1 Dual Phase (DP) and TRIP steels at equivalent
Commercially available Generation 3 (GEN3) advanced high strength steels (AHSS) have inherent capability of replacing press hardened steels (PHS) using cold stamping processes. 980 GEN3 AHSS is a cold stampable steel with 980 MPa minimum tensile strength that exhibits an excellent combination of formability and strength. Hot forming of PHS requires elevated temperatures (> 800°C) to enable complex deep sections. 980 GEN3 AHSS presents similar formability as 590 DP material, allowing engineers to design complex geometries similar to PHS material; however, its cold formability provides implied potential process cost savings in automotive applications. The increase in post-forming yield strength of GEN3 AHSS due to work and bake hardening contributes strongly toward crash performance in energy absorption and intrusion resistance. The viability of using cold stamped 980 GEN3 AHSS as a replacement for PHS has often been challenged due to concerns about formability and capability to meet
Commercially available Third Generation Advanced High Strength Steels (GEN3 AHSS) are qualified by automakers worldwide. With an excellent combination of strength and ductility, GEN3 AHSS are cold-formable and have shown potential to replace press hardenable steels (PHS) in structural applications. With overall formability equivalent to 590DP, U. S. Steel 980 GEN3 AHSS (980 XG3™ AHSS) may achieve cold-formed component geometries similar to those achieved by hot-formed PHS. Furthermore 980 GEN3 AHSS demonstrates a substantial increase in post-forming yield strength due to the combined effects of work-hardening and bake-hardening-thereby contributing strongly toward crash energy management performance. The technical challenges and attributes of cold-formed 980 GEN3 AHSS are explored in this paper for an automotive rear rail application (currently PHS), including: formability analysis, wrinkling elimination and springback compensation. A successful rear rail stamping trial was run with EG
To evaluate vehicle crash performance in the early design stages, a reliable fracture model is needed in crash simulations to predict material fracture initiation and propagation. In this paper, a generalized incremental stress state dependent damage model (GISSMO) in LS-DYNA® was calibrated and validated for a 780-MPa third generation advanced high strength steels (AHSS), namely 780 XG3TM steel that combines high strength and ductility. The fracture locus of the 780 XG3TM steel was experimentally characterized under various stress states including uniaxial tension, shear, plane strain and equi-biaxial stretch conditions. A process to calibrate the parameters in the GISSMO model was developed and successfully applied to the 780 XG3TM steel using the fracture test data for these stress states. The calibrated GISSMO fracture card for 780 XG3TM steel was then validated in simulations of wedge-bend tests, two notched tensile tests and axial crash tests of octagonal, 12-sided and 16-sided
Items per page:
50
1 – 50 of 307