Tensile behavior of advanced high strength steel (AHSS) grades with strengths up to 980 MPa has been extensively studied. However, limited data is found in literature on the tensile behavior of steels with tensile strengths of the order of 1180 MPa, especially at nominal strain rates up to 500/s. This paper examines tensile flow behavior to fracture of four different 1180 MPa grade steels at strain rates of 0.005/s, 0.5/s, 5/s, 50/s and 500/s using an experimental methodology that combines a servo-hydraulic tester and high speed digital image correlation. Even though the strength increase with the strain rate is consistent between the four different materials, the total elongation increase with the strain rate varies widely. Some insights as to why this occurs from examination of the steel microstructure and variation of retained austenite with strain are offered.