Browse Topic: Iron
A collaboration co-led by an Oregon State University chemistry researcher is hoping to spark a green battery revolution by showing that iron instead of cobalt and nickel can be used as a cathode material in lithium-ion batteries
A commonplace chemical used in water treatment facilities has been repurposed for large-scale energy storage in a new battery design by researchers at the Department of Energy’s Pacific Northwest National Laboratory. The design provides a pathway to a safe, economical, water-based, flow battery made with Earth-abundant materials. It provides another pathway in the quest to incorporate intermittent energy sources such as wind and solar energy into the nation’s electric grid
Hey superhero fans, meet the researchers making real life Iron Man technology possible. In a new study, engineers from Korea and the United States have developed a wearable, stretchy patch that could help to bridge the divide between people and machines — and with benefits for the health of humans around the world
Just as NASA needs to reduce mass on a spacecraft so it can escape Earth’s gravity, automotive manufacturers work to reduce weight to improve vehicle performance. In the case of brake rotors, lighter is better for a vehicle’s acceleration, reliable stopping, and even gas mileage. Orbis Brakes Inc. licensed a NASA-patented technology to accomplish that and more. This revolutionary brake disc design is at least 42 percent lighter than conventional cast iron rotors, with performance comparable to much more expensive carbon-ceramic brakes
This specification covers electrical iron in the form of bar, sheet, strip, and plate
A University of Bristol-led study, published in The Proceedings of the National Academy of Sciences, demonstrates how to make conductive, biodegradable wires from designed proteins. These could be compatible with conventional electronic components made from copper or iron, as well as the biological machinery responsible for generating energy in all living organisms
One of the most promising applications for the use of hydrogen in vehicles is in the combustion engine. According to the legislation proposal being considered by European Union, hydrogen internal combustion engines (H2ICE) are zero emissions solution. Among the existing solutions, H2ICE is becoming the preferred one on long haul trucks and offroad applications. This is due to the high durability of the powertrain, the lower initial investment when compared to other alternatives, and the possibility of using low purity hydrogen. However, despite the high potential use of hydrogen, because of it is the smallest known chemical element, its use can result in the penetration of hydrogen into metallic materials, with the undesirable effect of embrittlement. This effect occurs mainly when the material surface is exposed to high temperatures and pressures, or under corrosion. By diffusing into the crystal lattice, hydrogen is accumulated in the interstices and crystalline defects, reducing the
This specification covers a copper-zinc alloy (brass) in the form of wire
Lithium-ion batteries (LIBs) have become a focus of research interest for electric vehicles (EVs) due to their high volumetric and gravimetric energy storage capability, lower self-discharge rate, and excellent rechargeability coupled with high operational voltage as compared with the lead-acid batteries. This paper presents different machine learning approaches to predict health indicators & usable cycle life of LIBs. Here, we focus on two important battery health indicators i.e., battery discharge capacity and Internal resistance (IR). We used publicly available multi-cycled data of the Lithium Iron Phosphate (LFP), Lithium-Nickel-Manganese-Cobalt-Oxide (NMC) and Lithium Cobalt Oxide (LCO) cells. The approach proposed for predicting health indicators involves using a time-series model in the areas where the actual data i.e., from the Beginning of life (BOL) to the End of life (EOL) is not available. This methodology includes dynamically training a time-series based regression models
Reducing exhaust emissions has been a major focus of research for a number of years since internal combustion engines (ICE) contribute to a large number of harmful particles entering the environment. As a way of reducing emissions and helping to tackle climate change, many countries are announcing that they will ban the sale of new ICE vehicles soon. Electrical vehicles (EVs) represent a popular alternative vehicle propulsion system. However, although they produce zero exhaust emissions, there is still concern regarding non-exhaust emission, such as brake dust, which can potentially cause harm to human health and the environment. Despite EVs primarily using regenerative braking, they still require friction brakes as a backup as and when required. Moreover, most EVs continue to use the traditional grey cast iron (GCI) brake rotor, which is heavy and prone to corrosion, potentially exacerbating brake wear emissions. This study concentrates on emissions from a conventional grey cast iron
This specification defines limits of variation for determining acceptability of composition of cast and wrought corrosion and heat-resistant steels and alloys, maraging and other highly alloyed steels, and iron alloy parts and materials acquired from a producer
Electric machines offering a high power density are required for aerospace applications. Soft magnetic material with a high saturation flux density is one of the key component which is required to realize these power density targets. The need for a high saturation flux density necessitates the use of cobalt iron lamination over the conventional silicon steel. However, cobalt iron is very expensive i.e. order of 10 in comparison to silicon steel. Stator segmentation is identified as an appropriate method to reduce the wastage and cost associated with lamination. Consequently, in this paper, stator segmentation is analyzed on a 1.35 MW, 16-pole 48-slot propulsion machine. The impact of manufacturing is accounted by controlling the resulting airgap between the segmented structures. Electromagnetic performance for various segmented topologies are compared in terms of torque, torque ripple, and iron loss. Average torque is found to degrade by nearly 10% with an increase in the number of
Electric machines in aerospace applications are subjected to extremely high operating temperatures. This increases coercivity or decreases saturation flux density of the electrical steel resulting in increased core loss. The need for high power density and increased operating speed favours the use of thin gauge Silicon Steel (Si-Fe) and Cobalt Iron (Co-Fe) laminations for aerospace applications. Therefore, the variation in iron loss is studied for three grades of Si-Fe laminations by subjecting them to controlled ageing in laboratory. The analysis is also provided over a range of flux density and frequency to generalize the phenomenon over the operating domain. The results of ageing the laminations are in turn used to predict the degradation in performance of a 1.15 MW, 16-pole 48-slot propulsion machine for aerospace application. The degradation is estimated in terms of variation in iron loss. Iron loss is found to vary over a wide range (-11% to 5%) for thick gauge 0.35 mm SiFe
This study aims to present a numerical structural validation procedure for the drum brake spider component. To implement the procedure, the ANSA, ABAQUS, Fe-Safe, and Minitab engineering software were used for stress analysis, fatigue life calculation, and statistical validation using Weibull distribution. The results obtained from these tools allowed us to determine with acceptable error the spot failure of the component and the number of cycles until the occurrence of the failure. The input data to support the pre-processing of the numerical model and obtain the virtual results were determined from the application and analysis of the following methods: determination of the stress strain curve of the Spheroidal Graphite Iron (SG) material of the component, applied to Theory of Critical Distance (TCD) of fracture mechanics and evaluation of the behavior of Nodular Cast Iron under fatigue life. Given the non-linear characteristics under the conditions of use, the need for correction of
The reliable chemical characterization of non-exhaust emissions generated by brakes is of fundamental importance in order to provide correct information for source apportionment studies as well as for their toxicological and environmental assessment. Nowadays, the best option to obtain samples of PM10 emissions composed only by material worn from the tribological interface, i.e. the braking disc (BD) and the friction material (FM) rubbing surfaces, is to sample them on suitable collection filters at a dedicated dyno-bench, during a standard braking test cycle. In particular, the use of enclosed dyno-bench is necessary for excluding other spurious contributions from the environment, while defined test cycles are necessary to simulate standard driving conditions. Nevertheless, different braking cycles are usually characterized by different overall temperature profiles or energy parameters, which in the end have significant influence on the wear and the oxidation of the materials involved
Copper-free non-asbestos-organic (NAO) brake pads have been developed to satisfy the copper content regulations in North America. Copper-free NAO brake pads are required to have a stable friction coefficient owing to the electrification of the control systems, as well as to exhibit improved wear resistance to reduce brake dust emissions. Our previous study indicated that the transfer film formed on the rotor surface affects both the friction coefficient stability and amount of wear. In this study, we investigated how different types of inorganic fillers affect the transfer film formation and its composition in a wear test controlled by temperature. It was confirmed that the main component of the transfer film was iron oxide derived from the rotor. Furthermore, the contained components changed according to the appearance of the rotor surface after each wear test. When the brake pad contained potassium lithium titanate, a transfer film was formed uniformly and stably, the amount of wear
Thermal Barrier Coating (TBCs) is one of the most promising technologies for reducing heat dissipation through the combustion chamber in Internal Combustion (IC) Engines. In this paper, Gadolinium Zirconate (GZ) was chosen as a coating material and prepared using a solid-state synthesis process. Cast iron (GJL 300) was selected as the substrate, which is predominantly used as the cylinder head material, and GZ was deposited using Electron Beam Physical Vapor Deposition technique (EB-PVD). The mechanical, thermal, and tribological properties were evaluated as per the ASTM standards. Improved hardness and wear resistance is noted on coated substrates. The thermal conductivity and Coefficient of Thermal Expansion (CTE) of the coated substrates decreased by 3.43% and 5.03% respectively when compared with uncoated substrates. Hence, it is confirmed that thin-film TBCs has potential to provide the thermal and wear protection inside the combustion chamber of IC engines
Disc brake is the customarily used braking system in automobiles. In the disc brake assembly, rotor is subjected to rotation and the brake pads are operated by the driver through mechanical action. So, the disc plays a decisive role in dropping the speed or stopping the vehicle. These discs were commonly made of cast iron conventionally. But the limitations with respect to cast iron are that they have less corrosion resistance and heavy in weight. In order to overcome the above-said complications, alternate materials for disc have to be found. The main objective of this paper is to analyze the characteristics of three different materials and their characteristics and recommend a fitting material that highly replaces the conventional material and has better performance at on-road braking conditions. In order to find an alternative material for Cast Iron (CI), EN31, Ti-6Al-4V(Ti alloy) acts as a potential candidate in offering great damping property and thermal conductivity with less
Now a day’s ductile iron spring is becoming common in vehicles. Most OEMs prefer change over from forged spring seat to ductile cast iron spring seat particularly for lower spring seat application as there is weight benefit. The primary function of lower spring seat is to hold the axle and leaf spring together. Lower spring seat would experience pre load generated during U bolt clamping and could undergo permanent deformation when applied stress exceeds the material strength. In ductile cast iron nodularity is the prime factor which is responsible for material ductility characteristics. In this case study two spring seats A & B is compared for U bolt pre load force (Torque) where spring seat A is with nodularity requirement of 80 % min and the spring seat B is with nodularity of the order of 55%. U Bolt preload permanent deformation bench test is carried out and outcome shows that the spring seat A failed at 800 Nm torque and spring seat B failed at 600 Nm. The Method of generating
Foundry industries are very much familiar and rich experience of producing ferrous castings mainly Flake Graphite (FG) and Spheroidal Graphite (SG) cast iron. Grey cast iron material is mainly used for dampening applications and spheroidal graphite cast iron is used in structural applications wherein high strength and moderate ductility is necessary to meet the functional requirements. However, both types of cast iron grades are very much suitable in terms of manufacturing in an economical way. Those grades are commercially available and being consumed in various industries like automotive, agriculture etc, High strength SG Iron grades also being manufactured by modifying the alloying elements with copper, chromium, manganese andcobalt. but it has its own limitation of reduction in elongation when moving from low to high strength SG iron material. To overcome this limitation a new cast iron developed by modifying the chemical composition. Additionally, strengthening mechanism were
Items per page:
50
1 – 50 of 1642