Browse Topic: Carbon fibers

Items (408)
Monocoque is a kind of integrated shell structure technology, which has gradually become the primary choice for various racing teams to make car bodies because of its advantages of small specific gravity and high specific strength. The unit of the monocoque is a carbon fiber composite sandwich structure, which is composed of two layers of carbon fiber skin inside and outside and core material between them. The inner and outer layers of the carbon fiber skin are stacked with carbon fiber composite materials of different directions and types.In this project, we plan to optimize the shape of the monocoque shell using the surface design software Alias, select core materials of different materials and structures, more advanced layups, and obtain feasible layup sequences and core material types through Ansys simulation and Matlab collaborative optimization, which will be verified by three-point bending experiments. Different from the previous lightweight work based a lot on experience, this
Cheng, Zhu H.Liu, JJ
As stepper motors become more and more widely used in engineering systems (vehicles, 3-D printers, manufacturing tools, and similar), the effects of their induced magnetic fields present a concern during the packing and orientation of components within the system. For applications requiring security, this is also a concern as the background electromagnetic radiation (EMF) can be captured at a distance and used to reproduce the motion of the motor during operation. One proposed alternative is to use customized non-magnetic plastic shields created using additive manufacturing. Some small studies have been completed which show some effectiveness of this approach but these studies have been small-scale and difficult to reproduce. To seek a more rigorous answer to this question and collect reproducible data, the present study used full factorial design of experiments with several replications. Three materials were used: Polylactide (PLA), PLA with 25% (weight) copper powder, and PLA with 15
Hu, HenryPatterson, Albert E.Karim, Muhammad FaeyzPorter, LoganKolluru, Pavan V.
This study numerically analyzed the gas diffusion layer (GDL) in proton exchange membrane fuel cells (PEMFCs). The GDL, composed of carbon fibers and binder, plays a critical role in facilitating electron, heat, gas, and water transport while cushioning under cell compression. Its microstructure significantly influences these properties, requiring precise design. Using simulations, this study explored GDL designs by varying fiber and binder parameters and calculated gas diffusivity under wet conditions. Unlike previous studies, a novel model treated carbon fibers as beam elements with elastic binder connections, closely replicating structural changes under compression. Key properties analyzed include permeability, electrical conductivity, and gas diffusion efficiency under wet conditions. The optimized designs enhanced these properties while balancing trade-offs between electrical conductivity and mass transport. These findings provide valuable guidelines for advancing PEMFC technology
Ota, YukiDobashi, ToshiyukiNomura, KumikoHattori, TakuyaMaekawa, Ryosuke
This paper introduces an innovative in-wheel electric drive system designed for all-wheel drive Formula Student Electric racing cars. The system utilized AMK's DD5-14-10-POW-18600-B5 model as the driving motor, with a gearbox transmission ratio of 13.2 determined through Optimum Lap simulation. A two-stage gear reducer was integrated into a unified hub-spoke assembly, which connected directly to the ten-inch carbon fiber rim. In this paper, three conventional FSEC planetary gear reducer shafting designs are introduced, and a new shafting structure is proposed. Then the four structures are compared in multiple dimensions. Subsequently, we designed the shafting of the gear group, determined the size parameters of the shafting structure and the bearing type, and completed the verification. The planetary carriers were integrated with the wheel-edge suspension columns. Meanwhile, a special floating brake disc mounting method was employed, which increased the brake disc's heat capacity by
Guo, RuijieZeng, JunhaoYang, YuancaiHou, YijieZhu, ZhonghuiXiong, Jiaming
In Formula SAE , the primary function of the frame is to provide structural support for the different components and withstand the applied load. In recent years, most Formula Student teams worldwide to adopt monocoque made of carbon fiber composites, which are lighter and stronger. Enhancing the mechanical performance of carbon fiber laminates has been a key focus of research for these teams. In three-point bending tests, significant stress at the adhesive layer between the skin and the core material at both ends of the laminate, often lead to potential adhesive failure. Consequently, experimental boards often exhibit delamination between the outer skin and the core material, and premature core crushing, which compromises the mechanical performance of the laminate and fails to pass the Structural Equivalency Spreadsheet. Therefore, it is necessary to consider the influence of the bonding factor of toughened epoxy prepreg film on the mechanical properties of the laminated plate. This
Ning, Zicheng
This SAE Aerospace Recommended Practice (ARP) provides methods and guidelines for isolating dissimilar repair patch materials from carbon fiber reinforced plastic (herein also referred to as carbon composite) structure during a repair operation.
AMS G9 Aerospace Sealing Committee
The objective of this research is to present a novel variant of an Unmanned Aerial Vehicle (UAV) with an advanced flying wing configuration capable of detecting and rescuing individuals affected by avalanches. This leads to testing of the UAV, to identify if it can operate efficiently at the intended temperature and atmospheric conditions. Typically, UAVs can operate in a broad spectrum of temperatures. Regions prone to avalanches would experience near-cryogenic temperatures. The notion is investigated and tested in this specific scenario. The chosen location is Siachen, where temperatures can become as low as -25 degree Celsius (°C). It has been proven that a thermal camera aids the UAV to detect the distinct body heat signatures of individuals who are trapped under snow. The selection of wing, propeller, and vertical stabilizer airfoils is guided by standard analytical calculations, while the overall model is developed using 3D EXPERIENCE. The computational tests are conducted using
Veeraperumal Senthil Nathan, Janani PriyadharshiniPisharam, Akhila AjithSourirajan, LaxanaBaskar, SundharVinayagam, GopinathStanislaus Arputharaj, BeenaL, NatrayanSakthivel, PradeshRaja, Vijayanandh
This work focuses on the design and multi-parametric analysis of a designed propeller for a Pentacopter unmanned aerial vehicle (UAV). The basic and secondary design inputs, along with performance data like propeller diameter, pitch angle, chord length, and lift coefficient, are established using a standard analytical method. Approximately ten distinct airfoils, specifically NACA 2412, NACA 4109, NACA 4312, NACA 4409, NACA 4415, NACA 5317, NACA 6409, NACA 6412, NACA 23024, and NACA 25012, are evaluated over 13 Reynolds Numbers with the angle of attacks (AOA) of 20, varying from -5 to 15 degrees, for the purpose of detailed propeller design. The lift and drag coefficient values for ten distinct airfoils, utilizing a Reynolds number of 13 and 20 angles of attack, are obtained from the XFOIL software. Three sophisticated airfoils are selected from a pool of ten based on their high Lift-to-Drag (L/D) ratio performance. The selected airfoils with a high L/D ratio are NACA 6409, NACA 4109
Veeraperumal Senthil Nathan, Janani PriyadharshiniArumugam, ManikandanRajendran, MahendranSolaiappan, Senthil KumarKulandaiyappan, Naveen KumarMadasamy, Senthil KumarStanislaus Arputharaj, BeenaL, NatrayanRaja, Vijayanandh
Exploration vehicles on Titan are to be developed with considerations on the atmosphere present, especially the abundance of Nitrogen. This study focuses on identification of optimum materials for the propellers supporting an airship specifically created for Titan exploration. The base airship is designed to accommodate the coaxial propeller. The base of this airship is to be developed with four weather stations for collection of data samples. The stations are installed on inflatable platforms and have storage devices for recording and transmitting data collected by the aerobot. The airship will operate in Titan's atmosphere and atmospheric conditions, focusing on its design and computational analysis of structural effects and fluid dynamics. The Titan aerobot is built with a co-axial 4-blade propeller, horizontal and vertical fins, and a reaction wheel for yaw maneuvers. The co-axial propulsive system is capable of overcoming drag during steady level flight in the Titan atmosphere
Baskar, SundharVinayagam, GopinathPisharam, Akhila AjithGnanasekaran, Raj KumarRaji, Arul PrakashStanislaus Arputharaj, BeenaL, NatrayanGanesan, BalajiRaja, Vijayanandh
This study focuses on developing and deploying an Unmanned Aquatic Vehicle (UAV) capable of underwater travel. The primary objectives of this project are to detect the presence of dimethyl sulfide and toluene, as well as to identify any potential oil leakage in underwater pipelines. The UAV has a maximum operating depth of 300 m below the water surface. The design of this UAV is derived from the natural design of Rhinaancylostoma, an underwater kind of fish. The maximum operational setting for this mission is fixed at a depth of approximately 300 m beneath the surface of the sea, and the choice of this species is suitable for fulfilling the objectives of this undertaking. This technology will mitigate the risk associated with human interaction in inspection processes and has the potential to encompass various other resources in the future. The initial design data of the UAV is determined using analytical processes and verified formulas. The selection of the airfoil is done by comparing
Veeraperumal Senthil Nathan, Janani PriyadharshiniRajendran, MahendranArumugam, ManikandanRaji, Arul PrakashSakthivel, PradeshMadasamy, Senthil KumarStanislaus Arputharaj, BeenaL, NatrayanRaja, Vijayanandh
Fused deposition modeling (FDM) is a rapidly growing additive manufacturing method employed for printing fiber-reinforced polymer composites. Nonetheless, the performance of printed parts is often constrained by inherent defects. This study investigates how the varying annealing parameter affects the tribological properties of FDM-produced polypropylene carbon fiber composites. The composite pin specimens were created in a standard size of 35 mm height and 12 mm diameter, based on the specifications of the tribometer pin holder. The impact of high-temperature annealing process parameters are explored, specifically annealing temperature and duration, while maintaining a fixed cooling rate. Two set of printed samples were taken for post-annealing at temperature of 85°C for 60 and 90 min, respectively. The tribological properties were evaluated using a dry pin-on-disc setup and examined both pre- (as-built) and post-annealing at temperature of 85°C for 60 and 90 min printed samples
Nallasivam, J.D.Sundararaj, S.Kandavalli, Sumanth RatnaPradab, R.
The use of parts with notches or some geometric discontinuity is common in the industrial field. In the aerospace industry, it is common to use components made of composite materials with holes for fixing components. Thus, understanding the behavior of these materials, especially when they present holes or geometries that act as stress concentrators, becomes crucial to assess the possible reduction in strength due to presence of these notches. This study aims to determine the stress concentration factor in circular-hole composite laminates made of PPS (Polyphenylene Sulfide) with 5 HS carbon fiber. For determining stress concentration factor, analytical methods using the point stress criterion, computational numerical simulation through FEA (finite element analysis), and experimental validation of proposed model were used. Mechanical tests of specimens with dimensions adapted from ASTM D3039 standard were performed, which were instrumented using strain gauges in the transverse and
De Almeida, Fernando Cristian SoaresOliveira, Geraldo Cesar RosarioGuidi, Erick Siqueira
3-Dimensional (3D) printing is an additive manufacturing technology that deposits materials in layers to build a three-dimensional component. Fused Deposition Modelling (FDM) is the most widely used 3D printing technique to produce the thermoplastic components. In FDM, the printing process parameters have a major role in controlling the performance of fabricated components. In this study, carbon fibre reinforced polymer composites were fabricated using FDM technique based on Taguchi's Design of experimental approach. The matrix and reinforcement materials were poly-lactic acid (PLA) and short carbon fibre, respectively. The goal of this study is to optimize the FDM process parameters in order to obtain the carbon fibre reinforced PLA composites with enhanced hardness and compressive strength values. Shore-D hardness and compression tests were carried out as per American Society for Testing and Materials (ASTM) D2240 and ASTM D695 standards respectively, to measure the output responses
Sugumar, SureshDhamodaran, GopinathSeetharaman, PradeepkumarSivakumar, Rajkamal
Carbon-fiber structural batteries are not entirely new, but now Sinonus, a company spun out of Chalmers Technical University in Gothenburg, Sweden, is further developing the technology with carbon fibers that double as battery electrodes. The technology has already been demonstrated in low-power applications, and Sinonus will now develop it for use in a range of larger applications including, first, IoT devices and then drones, computers, electric vehicles and airplanes. By integrating the battery into carbon-fiber structures, Sinonus believes that an EV's weight could be reduced while the driving range could increase by as much as 70%. The carbon-fiber technology used by Sinonus originated at Oxeon, another Chalmers spin-off.
Kendall, John
The essential aspect of an automobile is its braking system. Brakes absorb the kinetic energy of the rotating parts, i.e., wheels, and dissipate this energy into the surroundings in the form of heat. This entire process is quite complex, and the brake disc is subjected to extreme thermal and structural stresses along with deformation, which might damage the disc. This paper presents a structural and thermal analysis of an Audi Q3 brake disc using an ANSYS 2021-R1. The present brake disc is designed using SOLIDWORKS software. Composite materials are added in the ansys material library by adding their respective characteristics. The thermal analysis mainly focused on temperature variation and directional heat flux. The structural study was conducted to understand the stresses developed during braking and the deformations observed. Along with a comprehensive structural and thermal analysis, this work has also estimated the life of the brake disc, the factor of safety, and the real-time
Bahulekar, AtharvShiralkar, ShaunakJomde, AmitShamkuwar, SonalPatane, PrashantShinde, TarangDandin, Shahbaz
Since the beginning of time, people have desired the best materials for production. Metals are often too heavy to be used in manufacturing. Polymer matrix composites (PMC) can be considered more dependable than metals in practical applications because of their high strength-to-weight ratio so it is a good alternative of metals. The article’s objective is to investigate the various PMC properties that are reinforced with carbon fiber. CFRP (Carbon fiber-reinforced polymer) was first made using the hand layup method with carbon fiber as a reinforcement and epoxy resin as a matrix after a thorough literature review. As CFRP have higher stiffness and superior “strength-to-weight ratio,” fiber-reinforced polymer (FRP) composites perform notably better than various conventional metallic materials. The qualities of the matrix can be changed to enhance the characterization of FRP composites. The mechanical qualities of FRP composites have risen as a result of significant advancements in the
Haider, RehanSingh, Pradeep KumarSharma, Kamal
RAMBHA-LP (Radio Anatomy of Moon Bound Hypersensitive Ionosphere and Atmosphere—Langmuir Probe) was one of the key scientific payloads onboard the Indian Space Research Organization’s (ISRO) Chandrayaan-3 mission. Its objectives were to estimate the lunar plasma density and its variations near the lunar surface. The probe was initially kept in a stowed condition attached to the lander. A mechanism was designed and realized for deploying the probe at a distance of 1 meter to avoid the plasma sheath effect in the moon’s plasma environment. The RAMBHA-LP deployment system consists of a metallic spherical probe with Titanium Nitride coating on its surface, a long carbon-fiber-reinforced polymer boom, a spring-assisted deployment mechanism, a dust-protection subsystem, and a hold release mechanism (HRM) based on a shape-memory alloy-based actuator. The entire RAMBHA-LP system weighed nearly 1.3 kilograms. The system had undergone many sub-system and system-level tests in ambient, dynamic
Alam, Mohammed SabirPaul, JohnsUpadhyay, Nirbhay KumarNalluveettil, Santhosh JSateesh, GollangiA, Jothiramalingam
Composite materials play an important role in aerospace manufacturing. The light weight, durability and ability to create complex shapes from molds make these materials ideal for frames and structural components that enable lighter, more fuel-efficient aircraft. While composite structures can weigh up to 20 percent less than their metal counterparts, these materials can often be more difficult to machine. The extremely abrasive nature of carbon fiber reinforced polymers (CFRPs) will wear down standard cutting tools more quickly than almost any other material. A standard carbide cutting tool may only hold up to cutting a few feet of CFRPs before its dimensional stability fails, while in traditional metal machining that same tool might last 20 to 50 times that before wearing out.
This research looks into how abrasive water jet machining (AWJM) can be used on carbon fiber-reinforced polymer (CFRP) materials, specifically how the kerf characteristics change with respect to change in process parameters. We carefully looked into four important process parameters: stand-off distance (SOD), water pressure (WP), traverse rate (TR), and abrasive mass flow rate (AMFR). The results showed that as SOD goes up, the kerf taper angle goes up because of jet dispersion, but as WP goes up, the angle goes down because jet kinetic energy goes up. The TR was directly related to the kerf taper angle, but it made the process less stable. The kerf drop angle was not greatly changed by AMFR. When it came to kerf top width, SOD made it wider, WP made it narrower, TR made it narrower, and AMFR made it a little wider. When the settings (SOD: 1 mm, WP: 210 MPa, TR: 150 mm/min, AMFR: 200 g/min) were optimized, the kerf taper angle and kerf top width were lowered. This improved the accuracy
Chandgude, AbhimanyuBarve, Shivprakash B.
Recycling of advanced composites made from carbon fibers in epoxy resins is required for two primary reasons. First, the energy necessary to produce carbon fibers is very high and therefore reusing these fibers could greatly reduce the lifecycle energy of components which use them. Second, if the material is allowed to break down in the environment, it will contribute to the growing presence of microplastics and other synthetic pollutants. Currently, recycling and safe methods of disposal typically do not aim for full circularity, but rather separate fibers for successive downcycling while combusting the matrix in a clean burning process. Breakdown of the matrix, without damaging the carbon fibers, can be achieved by pyrolysis, fluidized bed processes, or chemical solvolysis. The major challenge is to align fibers into unidirectional tows of real value in high-performance composites.
Muelaner, JodyRoye, Thorsten
We are in the context of the analysis of carbon fiber reinforced plastics (CFRP) high-pressure vessel (COPV - Composite Overwrapped Pressure Vessel) manufactured by filament winding (FW). Classically, the parameters of material models are identified based on flat laminate coupons with specific predetermined fiber orientations, and based on standards like the ones of ASTM relevant for flat coupons. CFRP manufactured by FW has a unique and complex laminate structure, which presents curvatures and ply interlacements. In practice, it is important to use coupons produced with the final manufacturing process for the parameter identification of the material models; if classical coupons produced by e.g. ply lamination are used, the effect of FW structure cannot be accounted for, and cannot be introduced in the material models. It is therefore essential to develop an approach to create representative flat coupons based on the FW process. In this study, a new hexagonal-shaped mandrel including
Watanabe, TakeshiBruyneel, MichaelAnantharaju, RajaneeshTsuchiyama, YusukeHuang, HsuminUrushiyama, Yuta
A team of inventors from NASA Langley and NASA Ames have created a new type of carbon fiber polymer composite that has a high thermal conductivity. This was achieved by incorporating Pyrolytic Graphite Sheets (PGSs) and Carbon Nanotubes (CNTs), which enhance the material’s ability to transfer heat when compared to typical carbon fiber composites.
This article explores the impact of As-built versus annealed Fused Deposition Modeling (FDM) on the mechanical properties of test samples fabricated from two distinct materials: Polyamide 6 (PA6) and PA6 with carbon fiber filament. Employing the FDM technique, these samples were meticulously produced, with significant process parameters maintained at optimal values. Two sets of printed specimens were prepared for examination, one composed of PA6 and the other of PA6 with carbon fiber (CF) reinforcement. The first set was subjected to mechanical testing in its As-built condition, while the second set underwent an annealing process utilizing a muffle furnace. The annealing reduces internal stresses, enhances interlayer adhesion, and promotes crystallinity. For both the sent samples exposed to comprehensive assessments to evaluate various mechanical performance attributes, including hardness, impact strength, tensile strength and flexural strength. The results of this study elucidate that
Raja, R.Arun Kumar, K.Jannet, SabithaNarasimharaj, V.
Additive manufacturing (AM) is a common way to make things faster in manufacturing era today. A mix of polypropylene (PP) and carbon fiber (CF) blended filament is strong and bonded well. Fused deposition modeling (FDM) is a common way to make things. For this research, made the test samples using a mix of PP and CF filament through FDM printer by varying infill speed of 40 meters per sec 50 meters per sec and 60 meters per sec in sequence. The tested these samples on a tribometer testing machine that slides them against a surface with different forces (from 5 to 20 N) and speeds (from 1 to 4 meters per sec). The findings of the study revealed a consistent linear increase in both wear rate and coefficient of friction across every sample analyzed. Nevertheless, noteworthy variations emerged when evaluating the samples subjected to the 40m/s infill speed test. Specifically, these particular samples exhibited notably lower wear rates and coefficients of friction compared to the remaining
Surendra, S.Sireesha, S.C.P., SivaSuresh, P.
The latest developments in composite materials are anticipated by green engineering. Materials must be eco-friendly, recyclable, biodegradable, and easy to decompose. Researchers are interested in utilizing natural fibres, fillers, and synthetic active ingredients. Natural fiber-polymer composites can specify certain mechanical properties but are hydrophilic and weak, so they rarely meet the needed thermal properties. Composite material selection depends on the application and the superior properties of the fibre/filler: banana fibre (BF), ice husk (RH) and multi-walled carbon nanotubes (MWCNT). In this research article, a brief discussion of the heat transfer mechanism of composites and the development of energy conduction equation are performed for hybrid natural polymer composite. The maximum thermal conductivity observed for 10BF/10RH/1MWCNT wt.% composite is 0.2694 W/mK. From ANSYS numerical simulation, the temperature distribution along the composite wall temperatures T1 to T8
Senthilkumar, N.Ramu, S.Deepanraj, B.
The evolution of materials technology has provided in recent decades the replacement of the raw material of many parts made of metal by polymers, carbon fibers, ceramics, and composite materials. This process has been driven by the permanent need to reduce weight and costs, which, even after replacing raw materials, still demand permanent improvement and optimization in the sizing process and in the manufacturing process. In the automotive industry, many components have been replaced by fiber-reinforced polymers, from finishing parts to structural components that are highly mechanically stressed and often also subjected to high temperatures. Although they are lighter and have a lower final cost than conventional metallic parts, components made of fiber-reinforced polymers bring great technological challenges to the development project. Within this context, computational modeling is an indispensable ally for obtaining a product capable of meeting the severe conditions required for its
Bueno, Estela Mari RicettiHiga, ArmandoBazaneli, José Augusto
Composite ceramic brake discs are made of ceramic material reinforced with carbon fibers and offer exceptional advantages that translate directly into higher vehicle performance. In the case of an electric vehicle, it could increase the range of the vehicle, and in the case of conventional internal combustion engine vehicles, it means lower fuel consumption (and consequently lower CO2 emissions). These discs are typically characterized by complex internal geometries, further complicated by the presence of drilling holes on both friction surfaces. To estimate the aerothermal performance of these discs, and for the thermal management of the vehicle, a reliable model for predicting the air flowing across the disc channels is needed. In this study, a real carbon-ceramic brake disc with drilling holes was investigated in a dedicated test rig simulating the wheel corner flow conditions experimentally using the particle image velocimetry technique and numerically. The simulation was performed
Rouina, SamanehBarigozzi, GiovannaAbdeh, HamedPalomino Solis, Daniel A.Iavarone, Paolo
The aim of this research is to investigate the effect of cutting temperature on the post-machining performance of “carbon fiber-reinforced polymer” (CFRP), providing insights into how temperature variations during machining influence the material’s mechanical properties and structural integrity. First, cutting temperatures generated during machining were monitored and used to categorize specimens. These specimens were then subjected to control heating at various temperatures, simulating the range of cutting conditions. Subsequently, the heated specimens were left to cool naturally in ambient air. A comprehensive tensile experiment was conducted on these specimens to assess the impact on mechanical behavior. The tensile properties, including elastic modulus and maximum tensile stress, were analyzed and compared across the different temperature. This approach allowed for a systematic evaluation of cutting temperature’s influence on CFRP’s post-machining performance, shedding light on the
Imdadul, Haque MdAbdul, Kader MohammadHelal, Miah MdAkter, Anika Insana
The U.S. Army fields a multitude of aircraft mission design series (MDS) developed by several different original equipment manufacturers with varying mission requirements and flight profiles. The structural analysis in this work assumes the materials, tooling, skillsets, and capabilities are organically available and proper at the repair location. Army Combat Capabilities Development Command, Redstone Arsenal, Alabama The U.S. Army operates and maintains several aircraft MDS to meet the warfighter's multidomain mission. Aircraft fielded by the U.S. Army originate from multiple equipment manufacturers. These aircraft include rotary-wing configurations such as the AH-64D/E Apache, CH-47F Chinook, and H-60A/L/V/M Blackhawk aircraft which significantly vary in mission parameters and flight profiles. These aircraft contain structures made from a majority aluminum, steel, and titanium alloys which have dominated aircraft designs for much of the history of powered flight. However, the use of
Industrialization concerns are stimulating research in development of new materials for automotive industries. Natural fibers which are available abundantly can be extracted naturally from environment. Preventing further pollutants on environment from depleting dwindling wood resources from forests and earth surface. Natural fibers are derived from renewable sources, making them environmentally friendly. Their use in composites reduces dependence on non-renewable resources and helps lower the carbon footprint of automobiles. Natural fibers, such as hemp, jute, and flax are lightweight materials. By incorporating them into polymer composites, the overall weight of automobile components can be reduced, leading to improved fuel efficiency and lower emissions. Natural fibers are generally less expensive than synthetic fibers, incorporating natural fibers into polymer composites can help reduce material costs in automobile manufacturing. Natural fiber polymer composites can be recycled at
Malkapuram, Devaiah
The uses of fillers in composites are creating new opportunities in the composite industry. Hollow Glass Microspheres (HGM) are Soda-lime-borosilicate glass hollow spheres with thin walls used as low-density filler material which can reduce final part weight by up to 15% or more without compromising the mechanical integrity. Glass bubbles take up 20 times the space of normal mineral filler, lowering the cost per unit volume; hence, the need for weightless and high-strength materials for state-of-the-art engineering applications may be met by HGM reinforced composites. Epoxy being a key structural material for marine, automotive and aerospace applications, is known for its brittle nature, poor mechanical and thermal properties and to date, not much work has been done on hollow glass microspheres reinforced carbon epoxy composites, however few systematic studies showing the influence of reinforcements on mechanical and thermal properties of carbon epoxy/HGM composites were conducted
K, TejasviRanga, K. V SS, GurusideswarSingh, P. Sundar
Innovators at NASA Johnson Space Center have developed a carbon fiber reinforced polymer (CFRP) sleeve, that, when fitted over a cylindrical Li-ion battery cell, can prevent cell-to-cell propagation by containing a thermal runaway (TR) event to the originating cell.
In order to determine if carbon–luffa hybrid composites are appropriate for automotive applications, this study gives a thorough mechanical evaluation of such materials. A potential path to improving the performance of automotive components is provided by combining the remarkable strength and stiffness of carbon fibers with the lightweight and environmentally friendly qualities of luffa fibers. The mechanical characteristics of the hybrid composites were characterized using a variety of experimental examinations, including tensile, flexural, and impact testing, and contrasted to those of traditional materials often used in the automobile sector. The composite containing 85% epoxy and 15% carbon fibers displayed the best tensile strength among the examined samples, reaching 168.58 MPa. However, 85% epoxy, 7.5% luffa, and 7.5% carbon fibers had a remarkable bending strength of 110.25 MPa. Notably, the B-type specimens distinguished themselves from the others with their low void content
Natrayan, L.Kaliappan, S.
Recycling of advanced composites made from carbon fibers in epoxy resins is essential for two primary reasons. First, the energy necessary to produce carbon fibers is very high and therefore reusing these fibers could greatly reduce the lifecycle energy of components which use them. Second, if the material is allowed to break down in the environment, it will contribute to the growing presence of microplastics and other synthetic pollutants. Recyclability and Embodied Energy of Advanced Polymer Matrix Composites discusses current recycling and disposal methods—which typically do not aim for full circularity, but rather successive downcycling—and addresses the major challenge of aligning fibers into unidirectional tows of real value in high-performance composites. Click here to access the full SAE EDGETM Research Report portfolio.
Muelaner, Jody Emlyn
In this work, triaxial carbon fiber – epoxy composite laminates were manufactured and tested to determine the influence of environmental temperature and strain rate on the mechanical properties, and finite element models were developed to understand how those temperature and strain rate dependent trends may influence performance in a military ground vehicle application. As environmental temperature increased, the strength and elastic modulus were observed to decrease. Across all three environmental temperatures tested in this study, as the strain rate increased, tensile strength and elastic modulus were observed to increase as well. When applied to a composite hat section geometry, the finite element results highlighted the importance of considering both the environmental temperature and loading rate in the design of composite structures for use in military ground vehicles.
Hart, Robert J.Patton, Evan G.Hamilton, Joseph M.Cardenas, IsabelaLuo, HuiyangMagallanes, Joseph
ABSTRACT High performance fiber reinforced ceramic rotors have the potential to greatly improve metrics in heavy vehicles such as braking distance, acceleration time, maximum speed, fuel consumption, improved handling, and increased vehicle maximum loads. Three types of carbon ceramic composite brake rotor materials were created using polymer infiltration pyrolysis (PIP) for carbon fiber reinforced silicon oxicarbide, reactive melt infiltration (RMI) for carbon fiber reinforced silicon carbide, and electric field assisted sintering (EFAS) for carbon fiber reinforced silicon carbide-zirconium diboride to investigate the manufacturing of 396mm diameter heavy vehicle brake rotors. The microstructure of parts created by each manufacturing method were discussed and contrasted. The EFAS manufactured rotor created the highest quality part due to extremely fast processing times, uniform material microstructure, and fusing of adjacent fibers in the carbon fiber network. Thermal conductivity was
Rufner, JorgenLeonard, CliffordNutt, StevenNguyen, Kevin
The purpose of this specification is to allow procurement of defined carbon fiber and fiberglass epoxy prepreg materials corresponding to their statistically derived material properties published in CMH-17 (formerly MIL-HDBK-17). As a result, no qualification or equivalency threshold values are provided. Users that intend to conduct a new material qualification or equivalency program shall notify the Qualifying Agency per 4.2.1.
AMS P17 Polymer Matrix Composites Committee
The formation of ice can be very detrimental to flight safety, since the ice accumulated on the surfaces of the aircraft can alter both the aerodynamics and the weight, leading in some cases to catastrophic lift reductions. Traditional active Ice Protection Systems (IPS) require high energy to work, add on weight to the aircraft and complexity to the manufacturing. On the other hand, the use of passive IPS, such as superhydrophobic/icephobic coatings, cannot be successful in harsh environmental conditions or for prolongated icing expositions. So, a valuable solution could be the combination of active and passive IPS with the aim to combine the advantage of both of them and mitigate their drawbacks. In this context, the present work proposes two innovative Hybrid IPS, based on an ultrasound piezoelectric system and on a thermoelectric system manufactured using carbon fibers as heater elements, both combined with a superhydrophobic coating with the aim to study the effect of the surface
Piscitelli, FilomenaAmeduri, SalvatoreVolponi, RuggeroPellone, LorenzoDe Nicola, FeliceConcilio, AntonioAlbano, FlorianaElia, GianpaoloNotarnicola, Lorenzo
Discontinuous or short-fiber composites are traditionally less expensive and are normally less difficult to manufacture than continuous fiber composites, while still retaining some of the benefits of reinforcing fibers. Similarly to continuous fibers, the volume ratio influences the mechanical properties of the composite. In addition the ratio of the length and diameter of the reinforcing fibers also plays a significant role. This ratio (also known as the aspect ratio) adds another variable to the anisotropic properties of lamina plies where now not only the content of fibers but also the dimensions of the fibers themselves play a role. Short fiber reinforced composites are already used in additive manufacturing techniques; however, the amount of carbon fiber and the length of the discontinuous strands in the filaments are normally not stated or vary greatly. An investigation in conducted on how the dimensional properties of the carbon fiber, (volume fraction and aspect ratio), affect
Garcia, JordanSmith, SayerSibley, BrianLu, Y Charles
In the era of electric vehicles(EVs), the need for weight reduction of the vehicle body is increasing in order to maximize the driving distance of the EV. Accordingly, there is an increasing need for research to efficiently apply lightweight materials, such as aluminum and CFRP, to the EV body parts. In this study, design methodologies and optimization measures to increase lightweight efficiency when applying lightweight materials to EVs will be discussed. Based on theoretical basis and basic performance of each part of the EV, the “Material Substitution Method” of replacing existing parts of a steel body with aluminum materials will be defined, and the optimal design process on how to overcome performance trade-off caused by material characteristics will be addressed. In applying the “Material Substitution Method” to the actual EV body design process, it was possible to convert 93% of the components from steel to aluminum and reduce the overall weight of the body by 23%. Based on
An, ByeongdoCha, MunsooAn, YongdokKim, HeejuOh, HeedaeKim, KyungboJang, YounghoonNam, ByeunggunChun, YunbaeLee, Hunky
In the Formula Student Electric China (FSEC), the body structure is generally divided into two types, truss steel tube body and carbon fiber load-bearing body (monocoque). The monocoque is loved by Formula Student teams around the world because it has a higher stiffness and lighter weight than the truss steel tube body. With the widespread application of monocoque, it also brings more problems. Due to the use of the monocoque, the connection between each component and the body was changed from the welding of the original truss steel pipe frame to a bolted connection. However, the bolted connection will provide a large preload force to the monocoque, resulting in the monocoque easily crushed in the local, so it is necessary to pre-bury an enhanced part in the monocoque to ensure the connection strength, that is, the embedded part. At present, aluminum plug-ins after topological hollow processing are being used. Although the weight is reduced a lot, the assembly cross-sectional area is
Kang, YuxinGuo, WeiWu, Shukai
In this research, the aim is to investigate the tensile properties and microstructures of Aluminium 6061 hybrid composite before and after extrusion. Aluminium 6061 Hybrid composite was fabricated using Stir casting technique with 6 Weight % silicon nitride (Si3N4) coated with nickel and 1Weight % carbon fiber (Cf) coated with copper as reinforcements followed by extrusion process. The tensile properties and microstructures of extruded hybrid composite was investigated and compared with as-cast hybrid composite. The microstructure of the hybrid composite showed excellent bonding between matrix and reinforcements interface. The hot extruded hybrid composite exhibited enhanced yield strength (44%), ultimate tensile strength (33%) and % elongation (20%) when compared with as-cast hybrid composite. Scanning electron microscopy (SEM) and Energy dispersive spectroscopy (EDS) techniques were used to observe the fracture surfaces of tensile testing specimens.
Khan, SaleemSuryanarayana, Ramesh ChinnakurliAdarsha, H.Suresh Kumar, R.
Generative Design is 3D CAD technique that uses AI to autonomously create optimal and productive design. Unlike regular designs, generative design applies algorithms to parameters that generate several possible design variations to review and choose from. The important and necessary factor of a formula vehicle is components that show high strength with light weight exhibiting higher performance. The un-sprung weight reduction is the most prevalent consideration while designing a formula vehicle. Our proposed study is focused to design and develop a formula vehicle knuckle through generative design method. Considering the manufacturing complications, continuous Fused Filament Fabrication (FFF) with Onyx – Carbon Fibre composite is contemplated with all the test samples and response dataset taken into consideration. The primary work involves the designing of steering knuckle with the help of computation software. Design and optimization are performed under varying loading conditions for
R, SoundararajanD, PraveenPG Shastry, PrajwalC, Pradeep
FRP composites are considered potential materials for electric vehicle body parts. Researchers are constantly working to improve the properties of these materials using a variety of methods. In this work, laminates are treated at cryogenic temperature to enhance their properties. A multi-layer composite material reinforced with glass fiber and carbon fiber in different orientations was prepared. Tensile properties such as ultimate tensile strength, tensile Modulus, and Poisson’s Ratio of flat laminates were determined by static tension tests based on the ASTM D3039 standard. The low-velocity impact test was performed using a drop-weight impact test to determine the peak load, energy absorbed, and deformation values. The Young’s modulus and Poison’s ratio value of the treated and untreated glass-epoxy laminate material were studied and compared. The damaged area of the specimen was calculated by taking an x-ray image of the test specimen. From the above tests, we understand that treated
A, Arockia JuliasN, Ram KumarPonniah Daniel, JeyakumarR G, Geethu ManiMohideen, S Rasool
In the era of rapidly increasing of EV/AVs, there are more electronic Modules/sensors & bigger battery packs added to EV (Electric Vehicles) vehicles, which has resulted in added mass penalty thereby impacting the range of EV vehicles. Range anxiety remains one of the biggest obstacles to widespread electric-car adoption, which drives the necessity of mass optimization to improve EV range. Multi-material design is a trend to lightweight automotive structures. The automotive industry is looking to make use of carbon fibers in their subsystem design. The challenge in current unidirectional carbon fiber design is difficulty to tailor stiffness/ strength across the fiber direction & orienting plies to system / vehicle load path. Optimization of ply angle for unidirectional composite provides constant fiber angle across the ply which does not address multiple load paths of all component /system. This drives for an opportunity to get the fiber angles tailor made to specific load path
Subramanian, Vijayasarathy
ABSTRACT This paper focuses on the application of a novel Additive Molding™ process in the design optimization of a combat vehicle driver’s seat structure. Additive Molding™ is a novel manufacturing process that combines three-dimensional design flexibility of additive manufacturing with a high-volume production rate compression molding process. By combining the lightweighting benefits of topology optimization with the high strength and stiffness of tailored continuous carbon fiber reinforcements, the result is an optimized structure that is lighter than both topology-optimized metal additive manufacturing and traditional composites manufacturing. In this work, a combat vehicle driver’s seatback structure was optimized to evaluate the weight savings when converting the design from a baseline aluminum seat structure to a carbon fiber / polycarbonate structure. The design was optimized to account for mobility loads and a 95-percentile male soldier, and the result was a reduction in
Hart, Robert JPerkins, J. ScottBlinzler, BrinaMiller, PatrickShen, YangDeo, Ankit
Items per page:
1 – 50 of 408