VIABILITY OF ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING IN VEHICLE SYSTEM LIFE CYCLE MANAGEMENT
2024-01-4009
11/15/2024
- Features
- Event
- Content
-
ABSTRACT
Traditionally, the life cycle management of military vehicle fleets is a lengthy and costly process involving maintenance crews completing numerous and oftentimes unnecessary inspections and diagnostics tests. Recent technological advances have allowed for the automation of life cycle management processes of complex systems. In this paper, we present our process for applying artificial intelligence (AI) and machine learning (ML) in the life cycle management of military vehicle fleets, using a Ground Vehicle fleet. We outline the data processing and data mapping methodologies needed for generating AI/ML model training data. We then use AI and ML methods to refine our training sets and labels. Finally, we outline a Random Forest classification model for identifying system failures and associated root causes. Our evaluation of the Random Forest model results show that our approach can predict system failures and associated root causes with 96% accuracy.
- Pages
- 6
- Citation
- Kern, M., and Cengic, A., "VIABILITY OF ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING IN VEHICLE SYSTEM LIFE CYCLE MANAGEMENT," SAE Technical Paper 2024-01-4009, 2024, https://doi.org/10.4271/2024-01-4009.