Browse Topic: Cost analysis
The automotive industry is facing unprecedented pressure to reduce costs without compromising on quality and performance, particularly in the design and manufacturing. This paper provides a technical review of the multifaceted challenges involved in achieving cost efficiency while maintaining financial viability, functional integrity, and market competitiveness. Financial viability stands as a primary obstacle in cost reduction projects. The demand for innovative products needs to be balanced with the need for affordable materials while maintaining structural integrity. Suppliers’ cost structures, raw material fluctuations, and production volumes must be considered on the way to obtain optimal costs. Functional aspects lead to another layer of complexity, once changes in design or materials should not compromise safety, durability, or performance. Rigorous testing and simulation tools are indispensable to validate changes in the manufacturing process. Marketing considerations are also
The future of wireless technology - from charging devices to boosting communication signals - relies on the antennas that transmit electromagnetic waves becoming increasingly versatile, durable and easy to manufacture. Researchers at Drexel University and the University of British Columbia believe kirigami, the ancient Japanese art of cutting and folding paper to create intricate three-dimensional designs, could provide a model for manufacturing the next generation of antennas. Recently published in the journal Nature Communications, research from the Drexel-UBC team showed how kirigami - a variation of origami - can transform a single sheet of acetate coated with conductive MXene ink into a flexible 3D microwave antenna whose transmission frequency can be adjusted simply by pulling or squeezing to slightly shift its shape
North American automakers and EV battery firms have five years to erase China's dominance in technology and manufacturing or they may face the reality of buying batteries from China for the foreseeable future. That was the message from battery-analysis company Voltaiq CEO Tal Sholklapper at a media briefing in Detroit. “We're in the final innings now,” Sholklapper said. “If the industry around batteries and electric vehicles and all the follow-on applications wants to make it, we're going to have to change the way we play
ABSTRACT Department of Defense (DoD) systems are often highly complex, costly and have extraordinarily long life cycles. Due to these characteristics requirements that these systems will need to meet over their life cycle are highly uncertain. To meet future requirements more rapidly at a lower cost requires an understanding of how to manage uncertainty and architecture to make these complex systems more flexible, adaptable and affordable. This paper proposes an alternative approaches to traditional development through managing uncertainty and architecture in an iterative fashion with decision analysis methods. Several specific methods and tools are discussed to include: Influence Diagrams, Design of Experiments, Design Structure Matrix and Target-Oriented Utility. Collectively the approach identifies the component and architectural drivers of cost in military systems
ABSTRACT In development of next generation products, 80% or more of the downstream costs associated are committed during design phase. If we could predict, with reasonable confidence, the long-term impact of design decisions, it would open opportunities to develop better designs that result in tremendous future cost savings, often with no compromise in key performance objectives. Systems engineering is, by its nature, multi-disciplinary. The aim of Integrated Product and Process Development is to bring these disciplines together in order to assess various downstream implications of early design decisions, creating better designs, avoiding dead-end designs that are costly in terms of design cycle-time, and realizing designs that are manufacturable while achieving the performance objectives. The goal is to build a downstream value analysis tool that links all the conceptual design activities. This capability allows a designer to realize the long-range impacts of key up-front design
ABSTRACT This paper will discuss how proven automotive systems engineering lightweighting principles and practices are being adapted and applied to combat and tactical ground vehicle systems. An automotive lightweighting methodology has most recently been utilized to reduce the weight of a light-duty pickup truck by 511 kilograms resulting in a 20.8% vehicle mass reduction. A holistic approach to light-weighting offers great benefits with additional mass reduction at a cost savings, reducing the overall vehicle lightweighting cost impact. Automotive studies have shown additional vehicle mass-reductions in the range of 3-5% are achievable when vehicles are aggressively light-weighted (i.e., approximate 20% vehicle mass reduction range). Although many factors like customer usage, function and performance requirements, production volumes, product life cycles, value stream, manufacturing infrastructure, litigation application, etc., are indeed considerably different between automotive and
ABSTRACT The Product Director for Contingency Base Infrastructure (PD CBI) is chartered to bring a system-of-systems approach to contingency basing. PD CBI has four major lines of effort to accomplish the mission. This paper briefly touches on the Strategic Recommendations, Analytical Support, and Stakeholder Collaboration and Integration lines of effort and focuses on the Contingency Basing Interface to the Warfighter line of effort. The paper outlines the Model-Based Systems Engineering (MBSE) approach employed by the CBI team, detailing the application of a common set of tools to address each part of the problem. The paper also addresses the use of existing models and simulations, modifying them for use with base infrastructure materiel, and developing new tools as needed, to conduct analyses treating a contingency base as a system of systems (similar to a ground vehicle system). The results of the analyses will provide the Army with materiel investment recommendations for decision
ABSTRACT It is time for Affordability and Producibility (AP) to take a more dominant role in Systems Engineering (SE). Functional design is no longer good enough. Cost, complexity and readiness must be drivers for optimum integrated design. Without focusing more on AP, we will continuously fuel the “design, respin, re-spin again” problem that drives significant cost and time into a system where the pace for delivery to theatre is moving as fast as ever. This paper describes the SE approach from an AP focus. Decisions and challenges that were encountered during the DRS OBVP design will be presented as a “real world” example. This paper will present the high level considerations to put AP up front in SE to drive decisions so that safe, reliable, cost effective products are delivered to the Warfighter in this tough, fast paced military environment
ABSTRACT Use of Model-Based Design (MBD) processes for embedded controls software Development has been purported for nearly the last decade to result in cost, quality, and delivery improvements. Initially the business case for MBD was rather vague and qualitative in nature, but more data is now becoming available to support the premise for this development methodology. Many times the implementation of MBD in an organization is bundled with other software process improvements such as CMMI or industry safety standards compliance, so trying to unbundle the contributions from MBD has been problematic. This paper addresses the dominant factors for MBD cost savings and the business benefits that have been realized by companies in various industries engaged in MBD development. It also summarizes some key management best practices and success factors that have helped organizations achieve success in MBD deployment
Abstract On the Mobile Detection Assessment Response System (MDARS) production program, General Dynamics Robotics Systems (GDRS) and International Logistics Systems (ILS), are working with the US Army’s Product Manager – Force Protection Systems (PM-FPS) to reduce system costs throughout the production lifecycle. Under this process, GDRS works through an Engineering Change Proposal (ECP) process to improve the reliability and maintainability of subsystem designs with the goal of making the entire system more producible at a lower cost. In addition, GDRS recommends substitutions of Government requirements that are cost drivers with those that reduce cost impact but do not result in reduced capability for the end user. This paper describes the production lifecycle process for the MDARS system and recommends future considerations for fielding of complex autonomous robotic systems
ABSTRACT Popularity of Advanced Driver Assistance Systems (ADAS) in the passenger car industry has seen an explosive growth in recent years. Some ADAS that are becoming ubiquitous are Lane Departure Warning (LDW), Blind Spot Detection (BSD) and automatic parking or parking assistance systems. In many cases, such systems had been developed specifically to handle the most demanding driving conditions at very high speeds, which typically require very sophisticated software and high-power hardware. However, in the other application areas or geographical regions, such sophistication often hinders adoption of the technology. An alternate approach is to use off-the-shelf (OTS) component as much as possible so that similar systems with an appropriate subset of functions can be developed cheaply and quickly. The approach similar to the NASA’s “PhoneSats” program is discussed in this paper
ABSTRACT Saft has continued to develop lithium-ion replacement batteries for the traditional lead-acid batteries for use in military vehicles. Saft’s 24 volt Xcelion 6T® delivers power at high rate that surpasses the delivered capacity of two lead-acid batteries. The battery design is tailored to support high rates, even at extreme cold temperatures, to support the mission needs for silent watch and starting for military vehicles. An additional design variant is now available, the Xcelion 6T Energy, to provide 30% more energy while still delivering excellent cranking capability. Both products are industrialized and in use in large new vehicle programs. Additionally, development continues on a MIL-PRF-32565 compliant version with release to market expected in 2019
ABSTRACT In monolithic protection materials, a threat increase correlates to an increased material thickness. This is evident in V50 armor material specifications, such as Rolled Homogeneous Armor (RHA) MIL-DTL-12560K. This relationship translates to combat system level weight; the higher the performance, the higher the material weight, the higher the system weight. For ground combat systems, the total platform weight indicates relative protection. Hence, the M1 Abrams weight and protection level is greater than the Bradley Family of Vehicles, and the Bradley weight and protection level is greater than the M113. The weight procurement dollarization impacts are known during developmental efforts, but weight relationships also impact training and sustainment costs. Thus armor based weight changes have at least three cost relationships: procurement, training, and sustainment. These cost relationships are useful to understand in the context of the Army’s annual budget cycle. Citation: RA
ABSTRACT The M1 Abrams will be the primary heavy combat vehicle for the US military for years to come. Improvements to the M1 that increase reliability and reduce maintenance will have a multi-year payback. The M1 engine intake plenum seal couples the air intake plenum to the turbine inlet, and has opportunities for improvement to reduce leakage and intake of FOD (foreign object debris) into the engine, which causes damage and premature wear of expensive components
ABSTRACT The U.S. Army must adapt and upgrade ground platforms at the speed of technology advancement to maintain competitive advantages over adversaries. The Program Executive Office (PEO) Ground Combat Systems (GCS) Common Infrastructure Architecture (GCIA) is a new ground systems approach to enable persistent modernization of future platforms. For legacy platforms, Project Lead Capability Transition and Product Integration (PL CTPI) is developing plans to incrementally incorporate standards and portions of GCIA where feasible and affordable on legacy platforms. The GCIA will enable rapid integration of ground system capabilities, increasing the Army’s ability to counter emergent threats on the battlefield. Citation: PEO GCS / PL CTPI, “Architecting for Persistent Modernization,” In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), NDIA, Novi, MI, Aug. 16-18, 2022
Metal cutting/machining is a widely used manufacturing process for producing high-precision parts at a low cost and with high throughput. In the automotive industry, engine components such as cylinder heads or engine blocks are all manufactured using such processes. Despite its cost benefits, manufacturers often face the problem of machining chips and cutting oil residue remaining on the finished surface or falling into the internal cavities after machining operations, and these wastes can be very difficult to clean. While part cleaning/washing equipment suppliers often claim that their washers have superior performance, determining the washing efficiency is challenging without means to visualize the water flow. In this paper, a virtual engineering methodology using particle-based CFD is developed to address the issue of metal chip cleanliness resulting from engine component machining operations. This methodology comprises two simulation methods. The first is the virtual chip test
The demand for electric vehicles (EVs) has been steadily increasing in recent years, led by the factors like environmental concerns, government incentives, and improvements in EV technology. The EV’s growth is expected to increase in the coming years as EVs become more affordable and more models become available on the market. Predicting the price of electric vehicles provides valuable insights on the EV market and inform a range of business, consumer, financial, and policy decisions. Predicting the price of electric vehicles using simple linear regression involves building a linear regression model with a single independent variable usually the vehicle’s characteristics or features to predict the dependent variable the price.This work has predicted the price of Electric Vehicle using a data set prepared for the Indian context. It has been predicted that there is significant correlation between battery capacity in Ah and the vehicle price. The measured RMSE value is 26274.942642891292
Medical and surgical instruments are utilized daily to save and improve lives. Because of this, they demand an exact level of accuracy and infallibility in their manufacture. Traditionally, aluminum and other metals have been the standard material of choice for medical and surgical instruments due to their weight, strength, durability, and cost benefits. However, new advances in technology are challenging the status quo and offering exciting new manufacturing possibilities that allow for greater material choices. One such advancement already making waves in the aerospace, leisure, and automotive industries — and poised to benefit medical and surgical manufacturing — is Additive Fusion Technology (AFT
In this paper, a novel mixed-integer programming model is developed to optimally assign the die sets to candidate plants to minimize the total costs. The total costs include freight shipping stamped parts to assembly plants, die set movement, outsourcing, and utilization. Therefore, the objective function is weighted multi-criteria and it takes into consideration some of the key constraints in the real-world condition including “must-move die sets”. An optimization tool has been developed that takes several inputs and feeds them as the input to the mathematical model and generates the optimal assignments with the directional costs as the output. The tool has been tested for several plants at Ford and has proved its robustness by saving millions of dollars. The developed tool can easily be applied to other manufacturing systems and original equipment manufacturers (OEMs
Composite materials have time and again proven to be highly useful, especially in the aerospace industry with the increasing need for light-weight materials albeit with high stiffness to strength ratios. The Ceramic Particle Reinforced Composites can be effectively utilized in tuning the natural frequencies of components by varying the volume fractions up to 40% with the help of Representative Volume Element (RVE) / Unit Cell Models as explained in Reference [1]. The aim of this paper is to tune the natural frequencies of a typical blade used in a gas turbine engine by modifying the material properties without changing the design profile significantly. The design profiles of blades are arrived at after a lot of engineering iterations from aerodynamics stability point of view and are also finalized based on meeting key performance parameters. However, the structural analysis studies are carried out after the profile generation, which may sometime predict that the natural frequencies are
Remote Function Actuator (RFA) systems are widely used as the standard solution for conveniently accessing vehicles by remote control. To accelerate product development cycles and reduce engineering costs of physical test, a computer aided engineering (CAE) method has been developed to predict transmission range of the RFA system. Firstly, the detailed computational electromagnetic (CEM) models of the transmitting and receiving antennas were developed. Secondly, the articulated human model and the full vehicle meshed model were introduced to the CEM models to reflect the physical test environment. Lastly, the RFA system range model was built by including both the key fob held by an articulated human body and RFA module installed in the fully meshed vehicle. The transmission range could be extracted when the simulated received power reached the receiving sensitivity of the RFA module
Items per page:
50
1 – 50 of 600