Complex chassis systems operate in various environments such as low-mu surfaces and highly dynamic maneuvers. The existing metrics for lateral motion hazard by Neukum [13] and Amberkar [17] have been developed and correlated to driver behavior against disturbances on straight line driving on a dry surface, but do not cover low-mu surfaces and dynamic driving scenarios which include both linear and nonlinear region of vehicle operation. As a result, an improved methodology for evaluating vehicle yaw dynamics is needed for safety analysis.
Vehicle yaw dynamics safety analysis is a methodical evaluation of the overall vehicle controllability with respect to its yaw motion and change of handling characteristic. The yaw dynamics safety analysis is crucial for understanding how a driver-vehicle system responds to disturbances (external forces such as failure modes) in various driving scenarios and maneuvers., and it plays a significant role in evaluating the overall safety and performance of vehicles.
In this paper, we are proposing a methodology for evaluating and performing vehicle yaw dynamics safety analysis, which considers definition of test maneuvers based on exposure, driver behavior model for assessment of controllability, and combining them to apply ISO-26262 approach to determine risk.