Browse Topic: Head-up displays
ABSTRACT Currently, fielded ground robotic platforms are controlled by a human operator via constant, direct input from a controller. This approach requires constant attention on the part of the operator, decreasing situational awareness (SA). In scenarios where the robotic asset is non-line-of-sight (non-LOS), the operator must monitor visual feedback, which is typically in the form of a video feed and/or visualization. With the increasing use of personal radios, smart devices/wearable computers, and network connectivity by individual warfighters, the need for an unobtrusive means of robotic control and feedback is becoming more necessary. A proposed intuitive robotic operator control (IROC) involving a heads up display (HUD), instrumented gesture recognition glove, and ground robotic asset is described in this paper. Under the direction of the Marine Corps Warfighting Laboratory (MCWL) Futures Directorate, AnthroTronix, Inc. (ATinc) is implementing the described integration for
Mercury Systems, Inc. Andover, MA 978-256-1300
At CES 2022 Panasonic Automotive Systems Company of America unveiled AR HUD 2.0 (Augmented Reality Head-Up Display 2.0), the first system to include a new, patented eye-tracking system (ETS). If you've ever thought about what exists beyond the limits of a HUD and the small rectangular box it displays on the windshield, welcome to the world of AR. And note that AR is not VR, Virtual Reality; VR is a space in which headsets or special glasses allow the wearer to experience a 3D world that doesn't exist except in this technology. It's increasingly used in automotive interior design
Researchers have developed a LiDAR-based augmented reality head-up display for use in vehicles. Tests on a prototype version of the technology suggest that it could improve road safety by “seeing through” objects to alert of potential hazards without distracting the driver
Integration of a driver monitor system (DMS) in a head-up display (HUD) gives the monitor camera a continuous view of the driver’s face, since the driver always faces the road ahead. However, with both infrared (IR) illuminator and IR camera packaged in the HUD, reflectivity of the windshield is important at IR wavelengths used by the camera. Not only is windshield IR reflectivity important for a clear camera image of the driver’s face, but increasing windshield reflectivity also decreases the effect of ambient sunlight on the camera image of the driver’s face. We describe a method to measure windshield reflectivity, both for the 940 nm band used by a DMS, and for visible light for the HUD. The measurement method uses a fiber-optic spectrometer, two collimating lenses, and a method to compensate for sample tilt. The lenses are mounted on a stage that adjusts the height above the sample. As an example, this method was used to characterize an IR reflecting windshield, prepared for a
This report identifies the reasons for, and results associated with, the conduct of a flight simulation research project evaluating the effect of low powered laser beam illumination of pilot crewmembers operating in the navigable airspace. This evaluation was primarily concerned with the possible degradation of pilot performance when illuminated by a laser while operating in an airport terminal area where pilot workloads are normally at their maximum
Following a number of high-visibility collisions between aircraft on the airport surface, overall taxi operations have been brought under greater scrutiny. In addition, observation of taxi operations and the results of associated research programs have revealed that the efficiency of taxi operations could be significantly improved with available technologies and by applying a human centered design approach. Surface operations displays have been tested in prototype form and a number of manufacturers are moving toward product definition. This document provides guidance on the design of elements, which may be part of surface operations displays whose objectives would be to enhance safety and to improve overall efficiency of aircraft operations on the airport surface. Such efficiency increases should be realized not only in day-to-day operations, but should also be manifested in training for surface operations. This document sets forth functional and design recommendations concerning the
This SAE Aerospace Recommended Practice (ARP) sets forth design and operational recommendations concerning the human factors/crew interface considerations and criteria for vertical situation awareness displays. This is the first of two recommended practice documents that will address vertical situation awareness displays (VSAD). This document will focus on the performance/planning types of display (e.g., the map display) and will be limited to providing recommendations concerning human factored crew interfaces and will not address architecture issues. This document focuses on two types of VSAD displays: a coplanar implementation of a profile display (side projection) and a conventional horizontal map display; and a 3D map display (geometric projection). It is intended for head down display applications. However, other formats or presentation methods, such as HUDs, HMDs and 3D audio presentations may become more feasible in the future. Even though the relationship of the vertical
The function of a multifunctional display (MFD) system is to provide the crew access to a variety of data, or combinations of data, used to fly the aircraft, to navigate, to communicate, and to manage aircraft systems. MFDs may also display primary flight information (PFI) as needed to insure continuity of operations. This document sets forth design and operational recommendations concerning the human factors considerations for MFD systems. The MFD system may contain one or more electronic display devices capable of presenting data in several possible formats. MFDs are designed to depict PFI, navigation, communication, aircraft state, aircraft system management, weather, traffic, and/or other information used by the flight crew for command and control of the aircraft. The information displayed may be combined to make an integrated display or one set of data may simply replace another. The information contained in this document can be applied to the design of all MFDs, including
The recommendations of this document apply to such aircraft as are able to perform both normal angle and steep IMC approaches, the latter being defined as those approaches having a final approach segment angle greater than 4°. Such aircraft can include both conventional and STOL fixed-wing aircraft, commercial air transport and/or utility and normal category helicopters, compound helicopters and powered lift vehicles (tiltrotors, tiltfans, tiltwings, etc
This SAE Aerospace Recommended Practice (ARP) sets forth design and operational recommendations concerning the human factors issues and criteria for cockpit display of traffic information systems. The visual and aural characteristics are covered for both the alerting components and traffic depiction/situation components. The display system may contain any one or a combination of these components Although the system functionality assumed for this document exemplifies fixed-wing aircraft implementation, the recommendations do not preclude other aircraft types. The recommendations contained in this document address both near and far term technology directed toward providing in flight traffic awareness, although the present version remains primarily focused on near term applications. Since this document provides recommendations, the guidance is provided in the form of “should” statements as opposed to the “shall” statements that appear in standards and requirements. The assumptions about
This document sets forth general, functional, procedural, and design criteria and recommendations concerning human engineering of data link systems. The recommendations are based on limited evidence from empirical and analytic studies of simulated data link communication, and on experience from operational tests and actual use of data link. However, because data are not yet available to support recommendations on all potentially critical human engineering issues these recommendations necessarily go beyond the data link research and include requirements based on related research and human factors engineering practice. It is also recognized that evolution of these recommendations will be appropriate as experience with data link accumulates and new applications are implemented. This document focuses primarily on recommendations for data link communications between an air traffic specialist and a pilot, i.e., air traffic services communications, although some recommendations address use of
This Aerospace Standard (AS), establishes minimum performance standards for those sensors, computers, transponders, and airplane flight deck controls/displays which together comprise a Takeoff Performance Monitor (TOPM) System. This standard also defines functional capabilities, design requirements, and test procedures. A TOPM system is intended to monitor the progress of the takeoff and to provide advisory information which the crew may use in conjunction with other available cues to decide to continue or abort the takeoff. See Appendix A for supplementary information relating to NTSB, CAA, and ad hoc committee concerns and background information
The head-up display system can overlay the real object with the projected image to assist the driver in driving. However, when road conditions are bad, the continuous vibration of the vehicle will cause the vehicle to tilt and shift. At this time, the projected image and the real object do not overlap well. This paper presents a correction algorithm for a head-up display system. The algorithm corrects the position of the projected image by inputting the tilt state of the vehicle. In this paper, the coordinate axis with the driver's eye as the origin is first established. Then the tilt state of the vehicle is decomposed into the rotation angle in three directions and the displacement in the vertical direction. Finally, the position of the projected image is corrected by inputting the tilt state of the vehicle so that the projected image can remain on the real object at all times. The simulation model is established in Unity3D. The effectiveness of the correction algorithm is verified by
This SAE Recommended Practice defines the various types of information required by the collision repair industry to properly restore light-duty, highway vehicles to their pre-accident condition. Procedures and specifications are defined for damage-related repairs to body, mechanical, electrical, steering, suspension, and safety systems. The distribution method and publication timeliness are also considered
This SAE Aerospace Recommended Practice (ARP) contains methods used to measure the optical performance of airborne electronic flat panel display (FPD) systems. The methods described are specific to the direct view, liquid crystal matrix (x-y addressable) display technology used on aircraft flight decks. The focus of this document is on active matrix, liquid crystal displays (LCD). The majority of the procedures can be applied to other display technologies, however, it is cautioned that some techniques need to be tailored to different display technologies. The document covers monochrome and color LCD operation in the transmissive mode within the visual spectrum (the wavelength range of 380 to 780 nm). These procedures are adaptable to reflective and transflective displays paying special attention to the source illumination geometry. Photometric and colorimetric measurement procedures for airborne direct view CRT (cathode ray tube) displays are found in ARP1782. Optical measurement
This document recommends design and performance criteria for aircraft lighting systems used to illuminate flight deck controls, luminous visual displays used for transfer of information, and flight deck background and instrument surfaces that form the flight deck visual environment. This document is for commercial transport aircraft except for applications requiring night vision compatibility
This SAE Aerospace Standard (AS) specifies minimum performance standards for all types of electronic displays and electronic display systems that are intended for use in the flight deck by the flight crew in all 14 CFR Part 23, 25, 27, and 29 aircraft. The requirements and recommendations in this document are intended to apply to all installed electronic displays and electronic display systems including those that have a touch screen interface within the flight deck, regardless of intended function, criticality, or location within the flight deck, but may also be used for non-installed electronic displays. This document provides baseline requirements and recommendations (see 2.3 for definitions of “shall” and “should”). This document primarily addresses hardware requirements, such as electrical, mechanical, optical, and environmental. It does not address system specific functions. It does not contain an exhaustive or comprehensive list of requirements for specific systems or functions
The adoption of head-up displays (HUDs) is increasing in modern automobiles. Yet integrating this technology into vehicles with standard windshield (WS) laminates can create negative effects for drivers, primarily due to the thickness of glass used. The double ghosting in HUD images is typically overcome by employing a wedged PVB between the two glass plies of the laminate. Another solution is to reduce the thickness of the glass without impacting the overall windshield toughness. Although this still requires the use of a wedged PVB to eliminate HUD ghosting, the thinner glass provides opportunity to increase the image size. However, reducing the thickness of a soda-lime glass (SLG) ply or plies in a conventional soda-lime glass (SLG) laminate can significantly impact the robustness of the laminate to external impact events. This paper will review how a hybrid laminate made from one ply of a relatively thick SLG and a second ply of relatively thin, chemically-strengthened glass, will
Head-up displays (HUDs) give visual information to drivers in an easy to understand manner and prevent traffic accidents. Augmented reality head-up displays (AR-HUDs) display the driving information overlaid on the actual scenery. The AR-HUD must allow the visual information and the actual scene to be viewed at the same time, and a sense of depth and distance are key factors in achieving this. Binocular parallax used in stereoscopic 3D display is one of the most useful methods of providing a sense of depth and distance. Generally, stereoscopic 3D displays must limit the image range to within Panum’s fusional area to ensure fusion of the stereoscopic images. However, when using a stereoscopic 3D display for an AR-HUD, the image range must extend beyond Panum’s fusional area to allow the visual information and the actual scene to be displayed at the same time. In this study, we investigate the visibility of images displayed beyond Panum’s fusional area on a stereoscopic 3D display for an
A new concept of Head Up Display is presented, using the windshield as a transparent screen. This breakthrough technology does not need the use of complex combiner, bulky optics and overhead projection unit. The novel system uses several holographic optical elements to perform a 3D stereoscopic display, with the ability to present floating graphical objects in a large field of view. Augmented Reality display will be possible, increasing considerably the User Experience and situational awareness, without the need of wearing a bulky and complex Head Mounted Display
With the advancement in vehicle technology over the years, many intuitive technologies are coming in automotive passenger vehicles to improve the safety aspects during vehicle driving in night conditions. In addition to headlamps, cornering lamps or infrared camera with head up display etc. are evolving as a part of AFS (Advanced Front Lighting Systems) to aid driver vision. Many OEMs are following conventional methodology of subjective assessments with the ratings on different numerical scale mapped with customer acceptance to validate head lamps and its tech updates. These methods lag in getting repeatability of results, acceptance reliability and not knowing the limitations of the installed system due to high dependency on the selected evaluators. This paper emphasizes on robust test methodology development to validate the complete performance of cornering lamps with the objective test data analysis. It also covers the test set up to be made exclusively to conduct test even in day
Items per page:
50
1 – 50 of 257