Browse Topic: Knock
Argon power cycle hydrogen engine is an internal combustion engine that employs argon instead of nitrogen of air as the working fluid, oxygen as the oxidizer, and hydrogen as the fuel. Since argon has a higher specific heat ratio than air, argon power cycle hydrogen engines have theoretically higher indicated thermal efficiencies according to the Otto cycle efficiency formula. However, argon makes the end mixture more susceptible to spontaneous combustion and thus is accompanied by a stronger knock at a lower compression ratio, thus limiting the improvement of thermal efficiency in engine operation. In order to suppress the limitation of knock on the thermal efficiency, this paper adopts a combination of experimental and simulation methods to investigate the effects of port water injection on the knock suppression and combustion characteristics of an argon power cycle hydrogen engine. The results show that the port water injection can effectively reduce the knock intensity of the argon
A high-accuracy knocking or end-gas autoignition prediction model with low computational loads is necessary to develop thermal-efficiency improvement technologies for SI engines efficiently using computational techniques. Livengood-Wu integral has been applied widely as a simple and practical model to predict in-cylinder autoignition timing. In the present study, a high-accuracy model based on Livengood-Wu integral, has been investigated. First, a small set of ignition delay time equations for a premium-gasoline surrogate fuel has been developed, which can reproduce the temperature-, pressure-, equivalence ratio-, and EGR-dependences of ignition delay time under constant-volume condition, produced using a detailed reaction mechanism. Then, Livengood-Wu integral using the ignition delay time equations has been applied to predict in-cylinder autoignition timing produced using the detailed reaction mechanism. Numerical analyses have found X of Livengood-Wu integral and error factors in
Increasingly stringent greenhouse gas and emission limits demand for powertrain electrification throughout all vehicle applications. Beside fully electric powertrains different configurations of hybrid powertrains will have an important role in upcoming and future vehicle generations. As already discussed in previous papers, the requirements on the combustion engine in hybrid powertrains are different to those in a conventional powertrain solution, heading for brake thermal efficiency targets of 45% and above within the product lifecycle for conventional fuels. Focus on product cost and production and assembly facility investment drives reuse of technology packages within modular powertrain technology platforms, with different combinations of internal combustion engines (ICE), transmissions, and e-drive-layouts. The goal of zero carbon operation requires compatibility of ICE for sustainable fuels. Ethanol, Methanol and in particular Hydrogen has significant impact on ICE subsystems
Items per page:
50
1 – 50 of 1791