Browse Topic: Jet fuel
This report lists documents that aid and govern the design of aircraft and missile fuel systems. The report lists the military and industry specifications and standards and the most notable design handbooks that are commonly used in fuel system design. Note that only the principle fuel specifications for the U.S. and Europe (Military Specifications, ASTM, and Def Stan) have been included within this report. The specifications and standards section has been divided into two parts: a master list arranged numerically of all industry and military specifications and standards, and a component list that provides a functional breakdown and a cross-reference of these documents. It is intended that this report be a supplement to specifications ARP8615, MIL-F-17874, and JSSG 2009. Revisions and amendments which are correct for the specifications and standards are not listed. The fuel system design handbooks are listed for fuels and for system and component design.
This SAE Aerospace Recommended Practice (ARP) covers a brief discussion of the icing problem in aircraft fuel systems and the different means that have been used to test for icing. Fuel preparation and icing test procedures for aircraft fuel systems and components are proposed herein as a recommended practice to be used for fixed wing and rotary-wing aircraft within their operational environment. This ARP mostly addresses aircraft fuel system level testing and provides a means to address the requirements of FAR 14 CFR § 23.951(c), § 25.951(c), § 27.951(c), and § 29.951(c). In the context of this ARP, the engine and the auxiliary power unit (APU) are not considered to be components of the aircraft fuel system. However, some of the methods described in this document can be applied to the engine, APU, and other aircraft (system or component level) icing tests. This revision does not completely address new developments in ice accretion and release resulting from internal flow in tubing
This SAE Aerospace Information Report (AIR) discusses the sources of copper in aviation jet fuels, the impact of copper on thermal stability of jet fuels and the resultant impact on aircraft turbine engine performance, and potential methods for measurement of copper contamination and reduction of the catalytic activity of copper contamination in jet fuels. This document is an information report and does not provide recommendations or stipulate limits for copper concentrations in jet fuels.
An investigation into emissions differences and their correlations with differing combustion characteristics between F24 and Jet-A was conducted. Raw emissions data was taken from a single stage jet engine by a FTIR gas analyzer. Measurements of H2O, CO2, CO, NOx, and total hydrocarbon emissions (THC) were taken at 60K, 65K, and 70K RPM. At 70K RPM Jet-A and F-24 the emissions were similar at approx.: 4% H2O, 3% CO2, 970 PPM CO, 28 PPM NOx. Jet-A THC emissions were approx.: 1200 PPM THC, F24 THC emissions were lower by over 60%. The significantly lower amount of THC emissions for F24 suggests more complete combustion compared to Jet-A.
Alternative fuels are sought after because they produce lower emissions and sometimes, they have feedstock and production advantages over fossil fuels, but their wear effects on engine components are largely unknown. In this study, the lubricity properties of a Fischer-Tropsch Gas-to-Liquid alternative fuel (Synthetic Paraffinic Kerosene-S8) and of Jet-A fuel were investigated and compared to those of Ultra Low Sulphur Diesel (ULSD). A pin-on-disk tribometer was employed to test wear and friction for a material pair of an AISI 316 steel ball on an AISI 1018 steel disk when lubricated by the fuels in this research work. Advanced digital microscopy was used to compare the wear patterns of the disks. Viscosity and density analysis of the tested fluids were also carried out. Tribometry for the fuel showed that S8 fell between Jet-A and ULSD when friction force was calculated and showed higher wear over time and after each test when compared to that of Jet-A and ULSD. An initially higher
The power demand for unmanned ground systems (UGS) and unmanned aircraft systems (UAS) has been ever-increasing to support important military operations. Mild hybridization technologies have the potential to address the ever-increasing power demand. The objective of this study is to investigate the capability of an electrically assisted turbocharger (EAT) as one mild hybridization method. A motor-generator (M/G) was integrated to a turbocharger to generate electricity using the engine exhaust energy, or to spin the turbocharger using the energy stored in energy storage device. The EAT was implemented to a 2-liter turbocharged direct-injection diesel engine fueled with jet fuel. Then, the operation of the EAT was examined and the results were compared to the baseline. The target manifold pressure was regulated by the M/G, which applies varying amounts of positive or negative torque to increase or decrease the speed of the EAT. The energy recovered from the exhaust stream and converted
This specification covers three series of environment resisting, circular, miniature electrical connectors (plugs and receptacles) with removable crimp and/or nonremovable solder contacts, and accessories. The connectors are only recommended for replacement and are not specified for aircraft applications (refer to AS50881).
This test method describes a procedure for measuring the largest pore or hole in a filter or similar fluid-permeable porous structure. A standard referee test method for precise determination or resolution of disputes is specified. A simpler inspection test procedure for quality assurance “go-no-go” measurement is also given. Bubble-point testing physics, analysis of bubble-point test data, and correlation with other methods of pore size determination are separately discussed in the appendix.
An experimental plant-based jet fuel could increase engine performance and efficiency, while dispensing with aromatics, the pollution-causing compounds found in conventional fuels, according to new research.
This SAE Aerospace Information Report (AIR) provides basic information on the use of slipper seal sealing devices when used as piston (OD) and rod (ID) seals in aerospace fluid power components such as actuators, valves, and swivel joints, including: The definition of a slipper seal and the description of the basic types in use. Guidelines for selecting the type of slipper seal for a given design requirement are provided in terms of friction, leakage, service life, installation characteristics, and interchangeability.
Water droplet size variation has been established in the literature as an important variable that influences the behavior and characteristics of water in fuel emulsion. However, with the growing demand for sustainable aviation fuels (SAF), no data is available that shows how these fuels will affect the size of dispersed water droplets and their frequency distribution. To address this lack of knowledge, this study explores and presents experimental results on the characterization of dispersed water droplets in alternative fuels and Jet A-1 fuel under dynamic conditions. The alternative fuels comprised of two fully synthetic fuels, two fuels synthesized from bio-derived materials, and one bio-derived fuel. The data and statistics presented reveal that water droplet frequency and size distribution are sensitive to changes in fuel composition. Observations showed an evident transition of the droplet percentile over time in the cumulative frequency distribution; this could be attributed to
This SAE Aerospace Recommended Practice describes a method for conducting room temperature, contaminated fuel, endurance testing when the applicable specification requires nonrecirculation of the contaminants. The objective of the test is to determine the resistance of engine fuel system components to wear or damage caused by contaminated fuel operation. It is not intended as a test for verification of the component's filter performance and service life. ARP1827 is recommended for filter performance evaluation.
This SAE Aerospace Information Report (AIR) provides background information, technical data, and related technical references for minimization of electrostatic hazards in aircraft fuel systems.
This document describes the initial development, evolution, and use of reticulated polyurethane foam as an explosion suppression material in fuel tanks and dry bays. It provides historical data, design practice guidelines, references, laboratory test data, and service data gained from past experience. The products discussed in this document may be referred to as "Safety Foam," "Reticulated Polyurethane Foam," "Baffle and Inerting Material," or "Electrostatic Suppression Material." These generic terms for the products discussed in this document are not meant to imply any safety warranty. Each individual design application should be thoroughly proof tested prior to production installation.
This specification covers environment resistant, heat-shrinkable solder type shield terminations. They may be used on data-bus, RF, and shielded cables in applications. Operating temperature of each product are as indicated on detail specifications.
Researchers have developed an innovative way to convert plastics to ingredients for jet fuel and other valuable products, making it easier and more cost effective to reuse plastics. The researchers converted 90% of plastic to jet fuel and other valuable hydrocarbon products within an hour at moderate temperatures and easily fine-tuned the process to create the products that they want.
This SAE Aerospace Recommended Practice (ARP) delineates two complementary filter element performance parameters: (1) dirt capacity, and (2) filtration efficiency, and corresponding test procedures. It is intended for non-cleanable (disposable), fine fuel filter elements, rated at 25 µm(c) or finer, used in aviation gas turbine engine fuel systems.
Wankel rotary engines (REs) are often used for unmanned aerial vehicle (UAV) applications due to their excellent power-to-weight ratio and their smooth operation. Existing RE propulsion units are mainly designed to run on high-volatility fuels like aviation gasoline or regular gasoline. However, specific applications require a jet fuel or even multi-fuel capability. Due to their geometry, the low compression ratio (CR) of REs prevents the implementation of compression ignition (CI) combustion processes. While publications of modified spark-ignition engines that are able to run on low-volatile fuels are already few in number, publications of heavy-fuel spark-ignited (SI) REs can hardly be found at all. The purpose of this paper is as follows: The operation of a SI RE operated on kerosene is discussed. Accordingly, a thermodynamic analysis is carried out at warmed-up operation with kerosene. It is shown that sufficient performance and power output can be achieved on kerosene for full
Items per page:
50
1 – 50 of 534