Browse Topic: Lubricating oils

Items (1,898)
Recently, global warming is becoming seriously. In the field of internal combustion engine, the thermal efficiency has to improve in the practical use. One of the current trends with spark ignition engine (SI engine) is “downsizing” which is equipped supercharger with the downsized displacement. The downsizing engine is popular in the field of the SI engine. However, one of the problems is the abnormal combustion so called Low Speed Pre-Ignition (LSPI) [1]. The LSPI occurs the engine operation which is low speed and high load condition. It has to be avoided, because the SI engine is broken and the improvement of thermal efficiency is obstructed. A lot of researchers have been reported about the mechanism of LSPI [2, 3]. One of the sources of LSPI would be the lubricating oil droplets in cylinder. One of the methods to avoid LSPI, it has been adjusted the ingredients of oil additive in lubricating oil. The state of the art of lubricating oil standard has been established anti-LSPI
kitano, KaitoTanaka, Junya
Compressor durability is a critical factor for ensuring the long-term reliability of Mobile Air Conditioning (MAC) systems in passenger vehicles. This study presents a software based strategy for enhancing compressor life using Smart Fully Automatic Temperature Control (FATC), requiring no additional hardware. The proposed approach leverages existing inputs from the FATC and Engine Management System (EMS) to intelligently manage compressor operation, with a focus on addressing challenges related to prolonged non-usage. In extended inactivity scenarios such as during cold weather, vehicle exportation, storage, or breakdowns, lubrication oil tends to settle in the compressor sump, leaving internal parts dry. Sudden reactivation at high engine speeds under such conditions can cause increased friction, wear and even compressor seizure. To mitigate this, an intelligent reactivation protocol has been developed and integrated into the Climate Control Module (CCM). This protocol continuously
Deshmukh, GaneshChotaliya, BhavyKulkarni, ShridharKHAIRE, DATTATRAYJaybhay, SambhajiJoshi, GauravShah, Geet
This specification covers a fluorosilicone (FVMQ) rubber in the form of molded rings.
AMS CE Elastomers Committee
Pre-ignition (PI) is a common issue in internal combustion engines (ICE) with spark ignition. While the various causes have been identified with conventional fuels (such as gasoline or gasoline blends), the causes with hydrogen in ICE are not yet fully understood. This article presents the results of investigations into the influence of seven different lubricating oils on PI in a single-cylinder hydrogen research engine. The variation of two different parameters at two engine speeds were investigated: load and air/fuel mixture. For both variations, the tests start at the same conditions and run until the operating limit of the engine is reached (peak firing pressure, or maximum intake manifold pressure). The PI and knocking PI are investigated, while classifying them according to the peak cylinder pressure. It has been observed that enleanment above λ = 2.4 can lead to higher PI rates, while simultaneously reducing the knocking PI. During the load sweep at 2000 1/min, the highest
Pehlivanlar, BenjaminTorkler, MichaelFischer, MarcusGöbel, ChristophPischinger, StefanMaulbetsch, TheoNübling, FritzNeumann, Stephan
Research on hydrogen-fueled internal combustion engines has gained growing attention as a carbon-neutral solution to reducing emissions in the transport sector. However, challenges remain, with the risk of abnormal combustion being one of the major criticalities. This paper aims to clarify the ignition process of a hydrogen-air mixture caused by lubricant oil droplets and soot deposition. To achieve this, high-speed imaging methods were applied with a Rapid Compression Expansion Machine under engine-like conditions. Direct imaging and OH* chemiluminescence were captured simultaneously on the engine head to visualize the ignition point and flame propagation. Different operating conditions were tested to evaluate the influence of lambda, intake pressure, and soot quantity on ignition occurrence. For each test bench configuration, ten successive tests were conducted to assess the probability of ignition. The presence of soot was ensured through a preliminary run with diesel injection. The
Tempesti, ClarettaYukitani, TakumiHoribe, NaotoRomani, LucaFerrara, GiovanniKawanabe, Hiroshi
Turbocharging technique is a key technology for the development of hydrogen engines, allowing high lambda values to reach low NOx emissions. In ultra-lean mixture conditions, the thermal management of the lubricating oil and its cold condition becomes a crucial aspect that cannot be neglected. Accordingly, the impact of different lubricating oils and different lubricant thermal conditions is highlighted referring to the performance of a turbocharging system for automotive application. To this aim, an experimental campaign is conducted at the test bench for components of propulsion systems of the University of Genoa. Tests are performed on a turbocharger equipped with a variable geometry turbine under both steady and unsteady flow conditions, considering different positions of the turbine regulating device. A 4-cylinder engine head was coupled to the turbocharger in order to reproduce the pulsating flow related to the opening and closing of the engine valves. The influence of the
Marelli, SilviaUsai, VittorioCordalonga, Carla
Premature self-ignitions in hydrogen internal combustion engines have been associated with the presence of hot spots. However, local increases in charge reactivity may be triggered not only by elevated temperatures but also by composition inhomogeneities. Such non-uniformities, in addition to imperfect mixing (e.g., in the case of direct hydrogen injection), may result from external contamination by more reactive components, such as lubricant oil. The present study aims to shed light on the mechanism through which lubricant oil contamination leads to the formation of sensitive spots, by analysing the behaviour of an isolated droplet suspended in a hydrogen/air environment. The “HyLube” chemical kinetic mechanism was employed to reproduce the chemical behaviour of lubricant oil, as it was specifically developed for this purpose. A one-dimensional numerical model was used to simulate the heating, vaporization, and combustion of the droplet. Zero-dimensional simulations were also
Distaso, EliaBaloch, Daniyal AltafAmirante, RiccardoTamburrano, Paolo
The roadmap towards carbon neutrality by 2050 makes necessary drastic reduction of road vehicle tailpipe carbon emissions. One viable approach to reach the abatement of carbon monoxide and dioxide is to fuel internal combustion engines (ICEs) with hydrogen. The burning of a hydrogen-air mixture inside the combustion chamber reduces to minimal amount the production of carbon emissions and particulate matter that are only produced by the presence of lubricant oil. However, the high temperatures reached by the end-gases promote the formation of nitrogen oxides. In high-performance ICEs, the pursuit for high-specific power by means of the adoption of stoichiometric mixtures is hindered by the need to reduce NOx - as this pollutant drastically drops when moving towards ultra-lean mixtures. The paper aims to present a CFD-3D framework to simulate the full engine-cycle of a high-performance Spark-Ignited (SI) Direct-Injection (DI) ICE fuelled at stoichiometric conditions. The methodology is
Baudone, Antonio DennyMarini, AlessandroSfriso, StefanoFalcinelli, FrancescoMortellaro, FabioTonelli, RobertoBreda, Sebastiano
This standard establishes the dimensional and visual quality requirements, lot requirements, and packaging and labeling requirements for O-rings molded from AMS7274 rubber. It shall be used for procurement purposes.
A-6C2 Seals Committee
This specification defines basic physical, chemical, and performance limits for 5 cSt grades of gas turbine engine lubricating oils used in aero and aero-derived marine and industrial applications, along with standard test methods and requirements for laboratories performing them. It also defines the quality control requirements to assure batch conformance and materials traceability and the procedures to manage and communicate changes in oil formulation and brand. This specification invokes the Performance Review Institute (PRI) product qualification process. Requests for submittal information may be made to PRI at the address in 2.1.3, referencing this specification. Products qualified to this specification are listed on a Qualified Products List (QPL) managed by PRI. Additional tests and evaluations may be required by individual OEMs before an oil is approved for use in their equipment. Approval and/or certification for use of a specific gas turbine engine oil in aero and aero
E-34 Propulsion Lubricants Committee
Reduced raw emissions from internal combustion engines (ICE) are a key requirement to reach future green-house-gas and pollutive emissions regulations. In parallel, to satisfy the need for increased engine efficiencies, the friction losses of ICEs gains attention. Measures to reduce parasitic drag inside the piston assembly such as reduced piston-ring pretension or thinner grade engine oils may increase oil ingress into the combustion chamber. The oil ingress is known to imply increased particle emissions directly counteracting the raw emission reduction target of engine development. To resolve this target conflict, the transport mechanisms of oil into the combustion chamber are the topic of current research. Specially developed research engines featuring a vertical optical window come with big potential to visualize the phenomena of the oil behavior inside the piston assembly group. Such ‘glass-liner’ engines play a pivotal role in identification and quantification of local and global
Stark, MichaelFellner, FelixHärtl, MartinJaensch, Malte
This specification covers grease for use within an aircraft. It also defines the quality control requirements to assure batch conformance and materials traceability and the procedures to manage and communicate changes in the grease formulation and brand. This specification invokes the Performance Review Institute (PRI) product qualification process. Requests for submittal information may be made to the PRI at the address in 2.2, referencing this specification. Products qualified to this specification are listed on a Qualified Products List (QPL) managed by the PRI. Additional tests and evaluations may be required by individual equipment builders before a grease is approved for use in their equipment. Approval and/or certification for use of a specific grease in aero and aero-derived marine and industrial applications is the responsibility of the individual equipment builder and/or governmental authorities and is not implied by compliance with or qualification to this specification.
AMS M Aerospace Greases Committee
This SAE Recommended Practice was developed by SAE and the section “Standard Classification and Specification for Service Greases” cooperatively with ASTM and NLGI. It is intended to assist those concerned with the design of heavy-duty vehicle components and with the selection and marketing of greases for the lubrication of certain components on heavy-duty vehicles like trucks and buses. The information contained herein will be helpful in understanding the terms related to properties, designations, and service applications of heavy-duty vehicle greases.
Fuels and Lubricants TC 3 Driveline and Chassis Lubrication
Employing “ball-on-ring” philosophy, a nonrotating steel ball is held in a vertically mounted chuck and, using an applied load, is forced against an axially mounted steel rotating ring. The test ring is rotated at a fixed speed while being partially immersed in a lubricant reservoir. This maintains the ring in a wet condition and continuously transports a lubricating film of test fluid to the ball and ring interface. The diameter of the wear scar generated on the test ball is used as a measure of the fluid’s lubricating properties. The apparatus can be used by adjusting the operating conditions to reproduce two different wear mechanisms. Therefore, the ALTE can assess a lubricant’s performance in that regard. These mechanisms are described below.
E-34 Propulsion Lubricants Committee
The LSPI (Low Speed Pre-Ignition) is one of the consecutive abnormal combustion cycles of supercharged SI engine with direct injection fuel supply system [1]. The LSPI occurs when the engine is running at low speed and high load condition. It is important for the SI engine to control essentially with alternative fuel, e-fuel and hydrogen in the future. It is considered that the LSPI would be caused by the autoignition of the deposit, the lubricating oil from ring crevice, the lubricating oil from piston crown and so on [2, 3, 4, 5]. Among of these causes, this research focuses on the scattering lubricating oil from piston crown. The previous our research has reported on the two points. One is about the frequency and quantity of the lubricating oil scattering from piston crown [6]. Another is about the frequency of abnormal combustion by the engine test [7]. As the result, it has been cleared that the frequency of abnormal combustion is 1/10 of scattering frequency of the lubricating
Omori, TakayaTanaka, Junya
This research article assesses the used motor oil’s (UMO) regeneration efficiency of a synthetic type X zeolite (siliceous fly ash–based) alone and combined with other adsorbents (composite adsorbents), namely activated carbon, bentonite, and acid-activated bentonite from Goshica’s (Kosovo) region. The UMO treated with the regenerating mixes has run about 20,000 km. Parameters including density, kinematic viscosity, viscosity index, pour point, and sulfur content were measured in the untreated and treated UMO and compared to those of the reference oil with additives of type SAE 5W-30. All regeneration mixes showed good regeneration efficiency, restoring the UMO’s parameters to almost the original ones of the reference oil with additives (SAE 5W-30). Only the zeolite alone could significantly reduce the sulfur content (removal efficiency 60%). This method deserves further investigation and with some improvements, it can be established as a reliable regeneration method for some UMO.
Korpa, ArjanDervishi, SaraGecaj, DianaShahu, KristiShehu, AlmaNuro, Aurel
This paper presents transient, complex, moving mesh, 3-D CFD analysis of an intebrake lubrication oil circuit for predicting flow performance. Intebrake is a mechanism for improving braking performance during over speeding conditions. The mechanism briefly opens the exhaust valve at the end of a compression stroke with a small valve lift and releases the compressed gases, thereby helping in quick application of the brake. There is no fueling during the process and hence, no combustion induced pressure rise which helps in quick application of the brake. During the intebrake operation, opening of the exhaust valve is achieved by using a complex lube oil circuit inside the exhaust rocker lever. The intebrake lube oil circuit consists of various spring-operated valves with micro-sized clearances, high oil pressure generation up to ~ 250 bar, 3-D movement of the mechanism components, and it is a transient operation. The 3-D movement consists of simultaneous rotational and translational
Tawar, Ranjit RamchandraPasunurthi, Shyam SundarBedekar, SanjeevRanganathan, Raj
This paper focuses on the basic principle of measuring viscosity and density with U-shaped tungsten wire sensor, and develops a model for measuring liquid viscosity and density with the help of oscillating ball model. Firstly, the working mechanism of the wire resonator is deeply analyzed. Then, by reducing the order of the fluid dynamic function, a simplified model is established for measuring the viscosity and density of liquid with U-shaped tungsten resonator. The experimental results show that the maximum error of viscosity is 7.22% and the average error is 2.81% when the viscosity ranges from 4.526mPa.s to 62.01mPa.s. In the range of 0.8486g/cm3 to 0.8711g/cm3, the maximum density error is 7.00% and the average density error is 1.89%. In summary, the simplified model proposed in this paper can accurately measure the viscosity and density of liquids.
Shan, BaoquanShen, YitaoYang, JianguoZhang, ZhaoyingWu, DehongZhao, Yingke
This paper explains transient, computationally rigorous, three-dimensional and one-dimensional multiphase CFD analysis of engine oil drainback system and lubrication system for predicting aeration. Aeration of engine oil is an important factor as it affects working of Hydraulic Lash Adjusters, bearings performance and it reduces lube system pressure itself which is detrimental for the entire engine. In this work specifically effect of engine tilting on lube oil aeration is presented. When engine is tilted, crankshaft and connecting rod/s are dipped in to oil, which creates air bubbles. These air bubbles travel to lube pump and then to the engine lube system. Therefore, it is essential to model aeration in Engine crankcase, Oil pan and Lube system for the purpose of predicting oil pressure reduction in lube system. The problem under consideration is spread over a bigger zone, involves rotating and translating components, passage’s dimensions are varying from microns to meters and
Tawar, Ranjit RamchandraBedekar, Sanjeev
The trend of internal combustion engines is reducing or eliminating carbon emissions and improve the overall efficiency. The Argon Power Cycle hydrogen-fueled engine can specifically improve the thermal efficiency by employing argon as the working substance. At the same time, due to the utilization of hydrogen and oxygen, the combustion of the fuel in Argon Power Cycle hydrogen-fueled engines produces zero carbon emissions or NOx emissions. However, during engine operation, lubricating oil consumption can still generate CO2 and becomes the only source for carbon emissions. Furthermore, the accumulation of CO2 under closed cycle will impede the condensation recovery of argon and reduce the efficiency and power. In this study, a closed cycle model of Argon Power Cycle hydrogen-fueled engine was constructed, in which argon is recycled by condensation instead of being charged like air in an open cycle model. Effects of lubricating oil consumption and operation duration on CO2 accumulation
Wang, ChenxuLi, MoSU, XiangDeng, JunTian, TianLi, Liguang
Depletion of petroleum crude oil and its environmental impacts challenge future generations. Vegetable oils provide a sustainable alternative with benefits like anti-wear properties, biodegradability, and renewability. Kusum oil's ability to lower carbon emissions significantly and promote sustainable industrial practices highlights its potential as a viable green alternative. This research paper presents a comprehensive and comparative analysis of a sustainable, environmentally friendly bio-lubricant and nonedible vegetable oil like Kusum oil. Bio-lubricant is produced by transesterification followed by epoxidation, which is known as epoxidized kusum oil lubricant or dehydrated kusum oil (DKO). The process of epoxidation significantly enhances the properties of Kusum oil, making it a promising alternative to conventional lubricants. It is compared with a widely used conventional mineral oil lubricant like SAE10W40. DKO exhibits comparable density, viscosity index, pour point, and
Prabhakaran, JPali, Harveer SinghSingh, Nishant K.
This paper presents a Digital Twin approach based on Machine Learning (ML), aimed at creating software-based sensors to reduce the auxiliary devices of the vehicle and enabling predictive maintenance, thus reducing carbon footprint. The solution is applied to the electric Lubrication Oil Pump (eLOP), a crucial component within a vehicle's powertrain system. The proposed eLOP Digital Twin integrates ML-based sensors to estimate critical parameters such as temperature, pressure and flow rate, reducing the reliance on physical sensors and associated hardware. This approach minimizes manufacturing complexity and cost, enhancing energy efficiency during both production and operation. Furthermore, the Digital Twin facilitates predictive maintenance by continuously monitoring the component's performance, enabling early detection of potential failures and optimizing maintenance schedules. This leads to lower energy consumption and reduced emissions throughout the component's lifecycle. The
Khan, JalalD'Alessandro, StefanoTramaglia, FedericoFauda, Alessandro
This study proposed the different micro-textures of the SC (square cylinder), SWS (square wedge shape), HS (hemispherical shape), and CR (cylindrical round) to improve the working efficiency of the journal bearing. A hydrodynamic lubrication model of the journal bearing under the impact of the changing dynamic loads is established to analyze the performance of micro-textures. The maximum oil film pressure and minimum frictional force in the journal bearing are selected as two evaluation indices. Some outstanding research results show that all the SC, SWS, HS, and CR added on the bearing surface improved the working efficiency of the journal bearing better than without the micro-textures. Moreover, the HS also improved the working efficiency of the journal bearing better than other structures of SC, SWS, and CR. To optimize the working efficiency of the journal bearing using HS, the dimension ltex and depth htex of HS should be selected and designed in a range of 3.6 < ltex ≤ 3.9 mm and
Song, FengxiangNguyen, VanliemLiu, Yaxi
Lubricant oil in combustion engines undergoes thermal degradation under high temperatures and forms solid deposits. These deposits, called coke, are insidious, black, and carbonaceous solids. To mitigate the problems associated with oil coking, an effective testing methodology must be developed to characterize the coke formation qualitatively and quantitatively. Previously, testing methodologies have been developed to measure coking tendency however some of the international standards such as the SAE ARP 6166 use visual inspection methods to assess coke. Such methods are unsuitable for advanced research as they are prone to error in human judgment. This paper intends to bridge this gap and discusses test methodologies that can measure Coke quantitatively and qualitatively. Coke formation has been studied using different laboratory methods such as static immersion, thin film oxidation, and dynamic spray tests to replicate the various conditions. In a static immersion test, a metal
Jeyaseelan, ThangarajaS, ShanmugasundaramBansal, LalitNegi, AshishKoka, Tirumala RaoDas, Arnab
Lowering carbon emissions from road-based transport is required to achieve climate targets. In addition to passenger cars, long-haul trucks contribute more than one-third of on-road generated carbon emissions. Therefore, this sector has great potential to reduce such emissions. Numerous options including electrified drivetrains are possible. Nevertheless, the existing fleet of trucks powered by conventional diesel engines also needs to be addressed. Additionally, a ramp-up of green electricity and charging infrastructure is required to ensure carbon-neutral and reliable transport. Heavy-duty diesel engines are typically suitable for use with first-generation biofuels. However, operational restrictions, such as shorter oil drain intervals are mandatory for users. In the case at hand, the oil change was mandatory after only 30,000 km when pure biodiesel (B100) was used instead of 120,000 km when operating on conventional, mineral oil-based diesel. These boundaries counter efforts to
Rohbogner, Christoph J.Heine, Carsten
As countries around the world attach more importance to carbon emissions and more stringent requirements are put forward for vehicle emissions, hybrid vehicles, which can significantly reduce emissions compared with traditional fuel vehicles, as well as low-viscosity lubricating oil, have become significant trends in the industry. In this article, a total of nine vehicles of 48 V mild-hybrid models and full-hybrid models are tested. Using three kinds of low-viscosity lubricating oil and driving a total of 120,000 km in environments with low temperature, high humidity, high temperature, or high altitude, the engines are then disassembled and scored. The effects of the four extreme environments on the engine starts–stops, ignition advance angle, engine power, state of charge (SOC), acceleration performance, and oil consumption characteristics of hybrid vehicles are studied; the oxidation characteristics and iron content change characteristics of low-viscosity lubricating oil are analyzed
Zhu, GezhengtingHu, HuaPan, JinchongLuo, YitaoHua, LunJiao, YanJiang, JiandiShao, HengXu, ZhengxinYan, JingfengWei, GuangyuanZhang, Heng
The overarching objective of the present study is to apply a quasi-two-dimensional approach to analyze the laminar flow of lubricating oil. Lubricating oils are non-Newtonian by nature. For these types of oils, the Sisko fluid model is the most suitable model of the nonlinear stress–strain relationship for these types of oils. It is hoped that by omitting the dependence of flow quantities in one direction, more qualitative information can be obtained on the characteristics of the purely three-dimensional boundary layer flow of lubricating oils. Some of the most familiar flow geometries discussed are steady flow over a flat plate, a corner of a wedge, and a stagnation region; steady flow in a convergent and divergent channel; and impulsively started flow over an infinite flat plate and semi-infinite flat plate. The governing equations of all flow geometries are transformed into nonlinear ordinary differential equations (ODE) using the free parameter transformation. The results are
Patel, ManishaBariya, H.G.
Re-refining of used lubricating oil is an economically attractive and effective recycling method that contributes significantly to resource conservation and environmental protection. The effective re-refining process of used lubricating oil undergoes thorough purification to remove contaminants and to produce high yield and good quality base oil suitable for reuse in lubricant formulation. Used lubricating oils have various hazardous materials, these can be processed with safe and efficient methods required to recover high-quality base oil products. Typically, used lubricating oil is a mixture of various types of additives, base oils, and viscometric grades as per the different types automotive and industrial applications. Re-refined base oils can be re-used to produce lubricants such as industrial and automotive lubricants like passenger car motor oils, transmission fluids, hydraulic oils, and gear oils. API classified base oils into two categories namely mineral base oils API Group I
Maloth, SwamyJoshi, Ratnadeep S.Mishra, Gopal SwaroopSamant, Nagesh N.Bhadhavath, SankerSeth, SaritaBhardwaj, AnilPaul, SubinoyArora, Ajay KumarMaheshwari, Mukul
Next generation lubricating oils for transportation sector require higher durability in operation, compatibility with new engine technologies and aftertreatment devices as well as high fuel economy (FE), thus contributing to the reduction of CO2 emissions, both in passenger cars and heavy-duty vehicles. The current paper aims to highlight the impact of dispersant main properties in preventing sludge and deposits formation on engine surfaces. The effect on frictional properties of lubricating oils through a multi-step activity was evaluated. Oil contamination by soot is a big concern not only for diesel but also for new generation of direct injection gasoline (GDI) engines. The presence of soot leads to oil thickening that heavily impacts on friction coefficient thus enhancing the role of dispersant in controlling soot and related viscosity increase and, indirectly, fuel consumption for long running periods. After an introduction on dispersant technologies, the focus of the paper moves
Lattuada, MarcoManni, MassimoNotari, MarcelloFerraro, GiovanniFratini, Emiliano
The use of carbon-free fuels, such as ammonia or hydrogen, or at least carbon neutral fuels, such as green methane or methanol is one of the most important paths in the development of low-carbon internal combustion engines (ICE). Especially for large, heavy-duty engines, this is a promising route, as replacing them with battery electric or fuel cell drives poses even greater challenges, at least for the time being. For some applications or areas of the world, small ICEs for trucks, passenger cars or off-road vehicles, operated with alternative fuels will still remain the means of choice. One of the biggest challenges in the development of hydrogen combustion engines is achieving high compression ratios and mean effective pressures due to combustion anomalies, caused by the low ignition delay and broad flammability limit of hydrogen. Oil droplets are considered to be one of the main triggers for pre-ignition and knocking. This paper will give a brief introduction, showing the results of
Rossegger, BernhardGrabner, PeterGschiel, KevinVareka, Martin
This SAE Standard establishes the requirements for lubricating oils containing ashless dispersant additives to be used in four-stroke cycle, reciprocating piston aircraft engines. This document covers the same lubricating oil requirements as the former military specification MIL-L-22851. Users should consult their airframe or engine manufacturer’s manuals for the latest listing of acceptable lubricants. Compliance with this specification must be accomplished in accordance with the Performance Review Institute (PRI) product qualification process as described in the documents referenced in 2.1.3. Requests for submittal information may be made to the PRI at the address shown in 2.1.3, referencing this specification. Products qualified to this specification are listed on a Qualified Products List (QPL) managed by the PRI. Approval and/or certification for use of a specific piston engine oil in aero applications is the responsibility of the individual equipment builders and/or governmental
E-38 Aviation Piston Engine Fuels and Lubricants
The aim of this work was to investigate the influence of different combinations of engine oil and oil additive as well as additivated and unadditivated fuel on particulate emissions in gasoline engines. To accomplish this, load, speed, and type of oil injection were varied on a single-cylinder engine, and the influence on particle number concentration and size distribution were evaluated. The tests were supplemented by an optical investigation of their in-cylinder soot formation. The investigation of fuel additives showed no significant differences compared to the reference fuel without additives. However, in the case of oil additives, detergents led to a significant increase in the number of particles in the <20 nm range. This effect occurred when used as both a single additive and a component in the standard engine oil. While viscosity improvers also lead to a measurable, but less pronounced, increase in the particle number concentration, no significant influence can be determined
Böhmeke, ChristianHeinz, LukasWagner, UweKoch, Thomas
This study examined the effects of lubricant viscosity and metallic content on the oxidation reactivity of diesel particles. In the first part, the factors affecting thermogravimetric analysis (TGA) experiments was discussed and confirmed. The influences of initial soot mass, heating rate, and airflow rate on soot oxidation rate and experimental reproducibility were investigated to develop an optimized TGA method. On the basis of these experiments, an initial soot mass of 2.0 mg, airflow rate of 4.8 L/h, and heating rate of 2.5°C/h were used for all subsequent TGA tests. It could be found that the TGA experiments had high repeatability, and the differences were less than 0.1%. In the second part, a four-cylinder diesel engine was lubricated with seven kinds of lubricant with different viscosity and metallic content by the use of viscosity index improver (VII), antioxidant and corrosion inhibitor (ACI), and ashless dispersant (AD). Particle samples were subjected to TGA to test their
Meng, HaoYang, HeZhang, WeiliXing, JianqiangXu, YanWang, Yajun
This SAE Standard establishes the requirements for non-dispersant lubricating oils to be used in four-stroke cycle piston aircraft engines. This document covers the same lubricating oil requirements as the former military specification MIL-L-6082. Users should consult their airframe or engine manufacturers’ manuals for the latest listing of acceptable lubricants. Compliance with this specification must be accomplished in accordance with the Performance Review Institute (PRI) product qualification process as described in the documents referenced in 2.2.2. Requests for submittal information may be made to the PRI at the address shown in 2.2.2, referencing this specification. Products qualified to this specification are listed on a Qualified Products List (QPL) managed by the PRI. Approval and/or certification for use of a specific piston engine oil in aerospace applications is the responsibility of the individual equipment builders and/or governmental authorities and may be accomplished
E-38 Aviation Piston Engine Fuels and Lubricants
Society is moving towards climate neutrality where hydrogen fuelled combustion engines (H2 ICE) could be considered a main technology. These engines run on hydrogen (H2) so carbon-based emission are only present at a very low level from the lube oil. The most important pollutants NO and NO2 are caused by the exhaust aftertreatment system as well as CO2 coming from the ambient air. For standard measurement technologies these low levels of CO2 are hard to detect due to the high-water content. Normal levels of CO2 are between 400-500 ppm which is very close or even below the detection limit of commonly used non-dispersive-infrared-detectors (NDIR). As well the high-water content is very challenging for NOx measuring devices, like chemiluminescence detectors (CLD), where it results in higher noise and therefore a worse detection limit. Even for Fourier-transformed-infrared-spectroscopy-analysers (FT-IR) it is challenging to deal with water content over 15% without increased noise. The goal
Jakubec, PhilippRoiser, Sebastian
The benefits introduced by the replacement of conventional centrifugal pumps with volumetric machines for Internal Combustion Engines (ICEs) cooling were experimentally and theoretically proven in literature. Sliding Rotary Vane Pumps (SVRPs) ensure to achieve an interesting reduction of ICEs fuel consumption and CO2 emissions. Despite volumetric pumps are a reference technology for ICE lubrication oil circuits, the application in ICE cooling systems still not represent a ready-to-market solution. Particularly challenging is the case of Heavy-Duty ICEs due to the wide operating range the pump covers in terms of flow rate delivered and pressure rise. Generally, SVRPs are designed to operate at high speeds to reduce machine dimensions and, consequently, the weight. Nevertheless, speed increase could lead to a severe penalization of pump performance since the growth of the friction losses. They produce wear phenomena which require expensive surface treatments or, more generally, the
Fatigati, FabioDi Bartolomeo, MarcoPallante, FrancescoLo Biundo lng, GiuseppeCipollone, Roberto
The need for even more efficient internal combustion engines in the road transportation sector is a mandatory step to reduce the related CO2 emissions. In fact, this sector impacts significantly on greenhouse gases worldwide, and the path toward hybrid and electric powertrains has just begun. In particular, in heavy-duty vehicles the full electrification of the powertrain is far to be considered as a really feasible alternative. So, internal combustion engines will still play a significant role in the near/medium future. Hence, technologies having a low cost to benefits (CO2 reduction) ratio will be favorably introduced in existing engines. Thermal management of engines is today a recognized area of research. Inside this area, the interest toward the lubricant oil has a great potential but not yet fully exploited. Engine oil is responsible of the mechanical efficiency of the engine which has a significant potential of improvement. A faster warm-up during a daily urban trip when the
Di Giovine, GiammarcoDi Battista, DavideCipollone, Roberto
The thermal behavior of the electric axle is an essential indicator which requires certain attention during the development process. Due to the complexity of heat generation mechanism and heat transfer boundary conditions, it is difficult to accurately predict the axle’s temperature, especially in real driving conditions. In this paper, a comprehensive 1D model is developed to simulate its heat transfer process effectively and accurately. The heat transfer model is developed based on the thermal network method, and the electric axle is divided into thermal mass according to its heat transfer characteristics. The heat generation model, which accounts for meshing loss, bearing loss, churning loss, and windage loss, exchanges heat flux and oil temperature information with the heat transfer model to take into account the effect of lubricating oil temperature on power loss. Meanwhile, 3D simulation is established for the lubricating oil flow inside the axle and the air flow around it, from
Hu, XiaoyuShao, HenghengHou, YuanjingSun, WanyuLiu, HongweiZhang, Lin
Effective design of the lubrication path greatly influences the durability of any transmission system. However, it is experimentally impossible to estimate the internal distribution of the automotive transmission fluid (ATF) to different parts of the transmission system due to its structural complexities. Hybrid vehicle transmission systems usually consist of different types of bearings (ball bearings, thrust bearings, roller bearings, etc.) in conjunction with gear systems. It is a perennial challenge to computationally simulate such complicated rotating systems. Hence, one-dimensional models have been the state of the art for designing these intricate transmission systems. Though quantifiable, the 1D models still rely heavily on some testing data. Furthermore, HEVs (hybrid electric vehicles) desire a more efficient lubrication system compared to their counterparts (Internal combustion engine vehicles) to extend the range of operation on a single charge. Thus, this paper includes a
Mohapatra, Chinmoy K.Schlautman, JeffLiu, ZheRaj, GowthamGao, Haiyang
Engine operation produces particles that contaminate the lubricating oil and can damage the engine's internal components. This paper presents a model for a three-coil inductive metal particle sensor and verifies the rationality and accuracy of the model by simulating the motion of a single spherical iron particle passing through the sensor. On this basis, the simulation of coupling double particles with different sizes, distances, and shapes is carried out. The study explores the influence of particle motion on the sensor-induced signal under various conditions. The research shows that when two particles pass through the sensor, the induced voltage signal will produce superposition when the distance between the two particles is small. The peak value of the induced voltage is 1-2 times the peak value of the induced voltage of a single particle. As the distance increases, the peak value of the induced voltage initially decreases, then slowly increases, and finally stabilizes. When the
Chen, SenShen, YitaoQiang, GuiyanZheng, ZhengWang, ZheyuHao, YinHu, Ting
The cylinder bore in an engine block is deformed under the assembling stress of the cylinder head and thermal stress. This distortion exacerbates the piston skirt friction and piston slap. Through a numerical and experimental study, this article analyzes the effect of an optimized bore profile on the engine performance. The piston skirt friction was estimated in a three-dimensional elastohydrodynamic (EHD) friction analysis. An ideal cylindrical bore under the rated load condition was assumed as the optimal bore profile that minimized the piston skirt friction without compromising the piston slap. The simulation study revealed that secondary motion of the piston immediately after firing the top dead center can be mitigated by narrowing the piston–bore clearance at the upper position of the cylinder. After optimizing the bore profile, enlarging the clearance from the middle to the lower part of the cylinder reduced the friction in the piston skirt to cylinder interface by an estimated
Hibi, TaigaMita, TakuroYamashita, Kenichi
The lubrication system of an internal combustion engine is a crucial component that performs a variety of functions, including lowering friction, cooling, supporting the load, and cleaning debris from the engine’s various moving components. Oil aeration refers to the phenomenon of trapping air bubbles in lubricating oil. High oil aeration can have a detrimental effect on engine performance since modern engines are equipped with parts such as VVT, HLA, RFF, PCJ, LCJ, and other components; whose operation is substantially impacted by the amount of air in circulating oil. In this study, an Inline 4-cylinder NA DOHC gasoline engine was tested with a densimeter-type aeration measuring machine. Test equipment layout which consists of hoses of various diameters and lengths were designed, fabricated, and instrumented to operate under different test conditions. Visual observations and quantitative measurements of oil aeration were performed in the oil sump. The purpose of this study is to
Attri, MayankYadav, VimalKamboj, Jagdish
The gearbox is a crucial aggregate in a diesel truck. Gearboxes must work efficiently to get the job done properly and lubrication is vital to this efficiency. Lubricating oil is like the circulation system of a gearbox. If the oil levels fall too low, the gearbox will likely fail. Gearbox failure can lead to expensive repairs that could be prevented. Besides added costs due to replacement or repair, costs associated with a loss of production could be significant. These issues are why; it is important to understand the consequences of having low lubricant levels. Similarly, higher oil level creates higher churning losses, heating of the Gear oil and oxidation, reduction in efficiency and increased oil leaks. Understanding the functions of gearbox lubricating oil can help you choose the right quantity of prevent gearbox failures. The aim of the testing is to find the accurate level of oil required to lubricate the Gearbox properly without failure and to reduce from the current predicted
Lakshamanan, SundarKs, DhianeshwarG R, SantoshRamaswamy, Sarathkumar
Advent of EV powertrain has considerable effect on transmission development activities as competed to regular ICE transmission. Conventional ICE transmission and the transmission for an e-powertrain differ on fundamental level. The conventional transmission has number of gear ratios, shift mechanism which enables the transmission to deliver a smooth power output as per demand from the driver. Whereas the e-powertrain transmission is mostly a single gear ratio transmission (reducer) which primarily depends on speed and torque variation from the motor to cater the driver requirement. Hence, the operating speeds of such e-transmissions can vary from 0 to 20000 rpm in both forward and reverse directions. Such a large speed variation as compared with conventional transmission calls for special attention towards the lubrication of internal components. High speeds and lower oil viscosities tend to disrupt the oil films in between contact surfaces causing metal to metal contact. This situation
Kushwaha, RakeshBhosale, VikasNavale, PradeepPatel, Hiral
CNG fuel has recently gained popularity in passenger and commercial vehicles due to its lower cost of operation compared to gasoline and diesel. It is also a more environmentally friendly fuel than other fuels. Converting a customer vehicle with a Diesel option to a CNG option is more difficult than building a new CNG vehicle. In this we are outlining the design of CNG fuel systems and the challenges of replacing them during the transition from Diesel to CNG and qualifying the Government Norms for running the vehicle will increase the life as well as make our environment more eco-friendly than diesel vehicles. Using CNG as a fuel in the automotive industry gives benefits over Gasoline & Diesel • increased life of lubricating oils, as CNG does not contaminate and dilute the crankcase oil. • Lower cost of per unit energy. • Being a gaseous fuel, CNG mixes easily and evenly in air, hence less hazardous. • CNG is less likely to touch off on hot surfaces since it includes a tall auto
Srivastava, RajatSharma, MukeshKumar, SatishSharma, PawanSingh, Gaurav
As per pieces of literature, 40 to 60 % of friction losses of Internal combustion engines occur in their piston-piston rings-liner assemblies and, there is a significant supportive role of simulation in improving this assembly. Literature is also available which tells, how changes in pistons affect oil consumption. Thus, piston dynamics is also important for oil consumption. Furthermore, the results from the simulation module of piston movement also serve as a significant input for postprocessing to calculate piston ring dynamics. This research is conducted to understand the piston secondary motion effect on oil consumption, friction, and blow-by. In this work, the results of ring dynamics and oil consumption simulation modules are studied with consideration and non-consideration of piston secondary motion results. The results like minimum oil film thickness, lubricating oil consumption, friction, friction power loss, and blow-by are investigated. Results indicate that oil throw-off
Sanadhya, KunjanNandgaonkar, M.Aghav, Yogesh
At present, it is generally considered in the analysis of the secondary motion of engine piston that the piston skirt–cylinder liner friction pair is fully lubricated in an engine operating cycle. However, in practice, when the piston moves upward, the amount of lubricating oil at the inlet may not ensure that the friction pair is fully lubricated. In this article, the secondary motion of piston is studied when the transport of lubricating oil is considered to determine the lubrication condition of piston skirt–cylinder liner friction pair. The secondary motion of piston is solved based on the combined piston motion model, hydrodynamic lubrication model, asperity contact model, and lubricating oil flow model. The secondary motion equation of piston is solved by the Broyden method. The hydrodynamic lubrication equation is solved by the finite difference method. The asperity contact between piston skirt and cylinder liner is calculated by the Greenwood model. The flow of lubricating oil
Liu, JihaiSun, Jun
Internal combustion engine vehicles are major contributors to many environmental and health hazardous emissions and sometimes consume more fuel. New regulations like Corporate Average Fuel Efficiency (CAFÉ) norms are coming up and demand lower emissions. Original Equipment Manufacturers (OEMs) are committed to bringing various technological advancements in Internal Combustion Engine (ICE)powered vehicles to maximize their efficiency. Hence it is important to reduce the loss and improve the fuel economy. This paper explains a new approach methodology used for reducing the gearbox drag by 5- 10 %. This improvement can significantly contribute to the overall efficiency improvement thus carbon footprints of vehicle getting reduced. The following optimization areas are considered for such improvements, 1 Deflector @ various locations 2 Lubrication oil viscosity change 3 Preload optimized for the benefit of the power/drag loss, 4 Oil quantity changes to improve the power loss 5 Top cover
Senthil Raja, T.K, Barathi RajaKumar, Aneesh
Items per page:
1 – 50 of 1898