Browse Topic: Engine lubricants

Items (932)
This paper explains transient, computationally rigorous, three-dimensional and one-dimensional multiphase CFD analysis of engine oil drainback system and lubrication system for predicting aeration. Aeration of engine oil is an important factor as it affects working of Hydraulic Lash Adjusters, bearings performance and it reduces lube system pressure itself which is detrimental for the entire engine. In this work specifically effect of engine tilting on lube oil aeration is presented. When engine is tilted, crankshaft and connecting rod/s are dipped in to oil, which creates air bubbles. These air bubbles travel to lube pump and then to the engine lube system. Therefore, it is essential to model aeration in Engine crankcase, Oil pan and Lube system for the purpose of predicting oil pressure reduction in lube system. The problem under consideration is spread over a bigger zone, involves rotating and translating components, passage’s dimensions are varying from microns to meters and
Tawar, Ranjit RamchandraBedekar, Sanjeev
Many countries around the world are currently working toward carbon neutrality, which would reduce greenhouse gas emissions to net zero by 2050. To achieve carbon neutrality, the search for new fuels to replace gasoline has been active. This study focuses on hydrogen and methanol fuels and examines their effects on plain bearings when these fuels are used in internal combustion engines. Compared to gasoline, these fuels differ significantly in the composition of gases produced after combustion. It is assumed that nitric acid, etc. will be mixed in the engine oil when hydrogen is combusted whilst formic acid, etc. will be mixed in the engine oil when methanol fuel is combusted. For this reason, corrosion tests were conducted by adding nitric acid or formic acid solution to the engine oil then placing plain bearings in the deteriorated oil. The results confirmed that significant corrosion of the bismuth overlay coating occurred and subsequently the performance of plain bearings may
Kondo, MakotoKawaura, HirokiShiroya, TomoyasuWatanabe, Airi
Triply Periodic Minimal Surface (TPMS) structures offer the possibility of reinventing structural parts and heat exchangers to obtain higher efficiency and lighter or even multi-functional components. The crescent global climate concern has led to increasingly stringent emissions regulations and the adoption of TPMS represents a resourceful tool for OEMs to downsize and lighten mechanical parts, thereby reducing the overall vehicle weight and the fuel consumption. In particular, TPMS structures are gaining growing interest in the heat exchanger field as their morphology allows them to naturally house two separate fluids, thus ensuring heat transfer without mixing. Moreover, TPMS-based heat exchangers can offer countless possible design configurations. These structures are obtained by periodic repetitions in the three spatial dimensions of a specific unit cell with defined dimensions and wall thickness. By tuning their characteristic parameters, the structure can be tailored to obtain
Torri, FedericoBerni, FabioMartoccia, LorenzoMarini, AlessandroMerulla, AndreaGiacalone, MauroColombini, Giulia
Carbon neutrality has become a global initiative, prompting automobile manufacturers to introduce electrified vehicles such as HEVs, PHEVs, BEVs, and FCEVs. Although interest in BEVs is rising, HEVs, PHEVs, and other internal combustion engine vehicles are expected to remain in use in regions where transitioning to BEVs is challenging. For these vehicles, low-viscosity engine oil is a key measure to further reduce CO2 emissions. Moreover, high-efficiency engines in electrified vehicles typically operate at lower oil temperatures than conventional engines due to reduced thermal loss to coolant and oil. Lowering viscous resistance in the mid- to low-temperature range below 80°C is significant for improving fuel economy. However, viscosity must be maintained above a certain level to ensure the performance of hydraulic devices at higher temperatures. To achieve both characteristics, oils with a low temperature dependence of viscosity (ultra-high viscosity index) are required. This
Yamamori, KazuoHirano, SatoshiYoshida, SatoruMatsui, Noriyuki
As the global energy transition moves to increased levels of electrification for passenger cars, then the number and role of hybrid electric vehicles (HEVs) increases rapidly. For these, the power reaches the road from an internal combustion engine (ICE) and/or an electric motor, with several switches between these three modes, over a typical drive-cycle. Consequently, this comes with a large increase in the number of significant engine stop and start events. Such events are potentially challenging for the HEV engine lubricant, as by comparison, for standard ICE cycles there is almost continuous relative movement of the two lubricated surfaces, for most areas of the engine. Based on both field and test cell observations, a challenging area for the lubricant within the gasoline direct injection (GDI) engine is the high pressure (HP) fuel pump, typically driven by a cam and follower, whilst lubricated by engine oil. From engine start, the speeds are low, also the fuel pump loads are high
Butcher, RichardBradley, NathanLambert, Bertie
Lubricant oil in combustion engines undergoes thermal degradation under high temperatures and forms solid deposits. These deposits, called coke, are insidious, black, and carbonaceous solids. To mitigate the problems associated with oil coking, an effective testing methodology must be developed to characterize the coke formation qualitatively and quantitatively. Previously, testing methodologies have been developed to measure coking tendency however some of the international standards such as the SAE ARP 6166 use visual inspection methods to assess coke. Such methods are unsuitable for advanced research as they are prone to error in human judgment. This paper intends to bridge this gap and discusses test methodologies that can measure Coke quantitatively and qualitatively. Coke formation has been studied using different laboratory methods such as static immersion, thin film oxidation, and dynamic spray tests to replicate the various conditions. In a static immersion test, a metal
Jeyaseelan, ThangarajaS, ShanmugasundaramBansal, LalitNegi, AshishKoka, Tirumala RaoDas, Arnab
The search for environmentally friendly and sustainable lubricants for automotive and industrial applications has led to extensive research on bio lubricants as a viable alternative to conventional engine oils and mineral oils. The biodegradable and ecofriendly nature of vegetable oil, makes it an excellent replacement for the depleting mineral oils. Still, a good number of modifications must be brought in, to overcome the drawbacks of vegetable oils. In this work, the preparation and evaluation of lubricating properties like tribological, rheological, thermal etc. of Neem seed oil (NSO) with and without additives were carried out and effectively compared with the lubricating properties of synthetic oil, Polyalphaolefin 6 (PAO 6) and with a commercial engine oil, SAE20W40. The copper oxide nanoparticles were dispersed in neem seed oil as additive in various proportions (0.1, 0.2, 0.3 and 0.4 wt.%) to enhance the tribological properties. The tribological analysis were carried out to
Menon, Krishnaprasad SR, Ambigai
This SAE Standard was prepared by Technical Committee 1, Engine Lubrication, of SAE Fuels and Lubricants Council. The intent is to improve communications among engine manufacturers, engine users, and lubricant marketers in describing lubricant performance characteristics. The key objective is to ensure that a correct lubricant is used in each two-stroke-cycle engine.
Fuels and Lubricants TC 1 Engine Lubrication
The information in this SAE Recommended Practice has been compiled by Technical Committee 1 (Engine Lubrication) of the SAE Fuels and Lubricants Division. The intent is to provide those concerned with the design and maintenance of two-stroke-cycle engines with a better understanding of the properties of two-stroke-cycle lubricants. Reference is also made to test procedures which may be used to measure the chemical and physical characteristics of these lubricants.
Fuels and Lubricants TC 1 Engine Lubrication
During accelerations and decelerations of a race car whose engine has a wet sump, the forces generated by the vehicle’s motion cause the engine oil to vigorously shift towards the walls of the oil pan and crankcase, contributing to the phenomenon known as ‘sloshing.’ This phenomenon often leads to fluctuations in oil pressure, resulting in oil pressure surge, when the oil is pushed away from the pump pickup point. Via the logged data, the Formula UFSM FSAE Team had witnessed a recurrent lack of oil pressure in the race track during the 2023 Brazilian FSAE competition. In the AutoCross Event, the recurrence of this problem was 80% of the right corners on lateral accelerations between 0.80G and 1.30G. The average oil pressure in this condition was 0.80 bar, even reaching 0.10 bar above 5000 RPM. Therefore, it was necessary to develop a new set of baffles for the oil pan, capable of minimizing the effects of sloshing and, consequently, the oil surge. As a method of research, a test bench
Zimmermann, Natalia DiovanaJunior, Luiz Alfredo CoelhoMartins, MarioHausen, Roberto
The American Petroleum Institute’s (API) Single Technology Matrix (STM) is a data-based, Virtual Testing process and protocol (utilizes test data, characteristics and features of base stocks and blends coupled with statistical methods and analysis) used to predict the performance capability of a specific engine oil additive technology in a single specified base oil, in a given engine test. The concept was first introduced in 2002, codified and implemented by API in 2007, and updated in 2022. The previously published advantages of STM in the proof-of-performance of engine oils, remain relevant. These advantages include a data space focused on interpolation, documented statistical analysis protocol, limitation to a specific formulation, flexibility in understanding complicated, interactive, or non-linear technology and base oil relationships, and timeliness. There have been numerous changes to, and in, the engine oil industry since the introduction of STM in 2007. These include advances
Zielinski, ChristineScinto, PhilipChen, MinGibbons, GreerBaker, Charles
In recent years, deposit formation in fuel systems for heavy-duty engines, using drop-in fuels, have become increasingly common. Drop-in fuels are particularly appealing because they are compatible with existing engines, allowing for higher proportions of alternative fuels to be blended with conventional fuels. However, the precipitation of insoluble substances from drop-in fuels can result in fuel filter clogging and the formation of internal injector deposits, leading to higher fuel consumption and issues with engine drivability. The precise reasons behind the formation of these deposits in the fuel system remain unclear, with factors such as operating conditions, fuel quality, and fuel contamination all suggested as potential contributors. In order to reproduce and study the formation of internal injector deposits, for heavy-duty engines under controlled conditions and to facilitate a more precise comparison to field trials, a novel injector test rig has been developed. This newly
Pach, MayteHittig, HenrikTheveny, ArnaudKusar, HenrikHruby, Sarah
The focus on sustainability has encouraged innovation across industries with a growing emphasis on minimizing environmental impact. In the transportation sector, optimizing engine lubricants emerges as a crucial avenue for achieving sustainable performance as used engine oil is the primary lubricants waste stream. Re-Refined Base Oil (RRBO) presents a compelling solution, offering a sustainable alternative to virgin base oils. By reclaiming and reprocessing used oil, RRBO not only minimizes waste but also embodies the ideology of circularity, promoting resource efficiency and environmental conservation. This study presents the collaborative efforts between an Indian Automotive OEM and Lubricant Technology Partner towards the development of engine oil utilizing Re-Refined Base Oil (RRBO) for automotive applications. Specifically, two formulations were targeted: a 5W-30 A5/B5 oil for Bharat Stage IV passenger car usage and a 15W-40 CI4+ oil for Bharat Stage IV commercial vehicle
Tyagarajan, SethuramalingamSingh, SamsherBondre, SushilThanapathy, Saravana RajaDalvi, Preshit
Next generation lubricating oils for transportation sector require higher durability in operation, compatibility with new engine technologies and aftertreatment devices as well as high fuel economy (FE), thus contributing to the reduction of CO2 emissions, both in passenger cars and heavy-duty vehicles. The current paper aims to highlight the impact of dispersant main properties in preventing sludge and deposits formation on engine surfaces. The effect on frictional properties of lubricating oils through a multi-step activity was evaluated. Oil contamination by soot is a big concern not only for diesel but also for new generation of direct injection gasoline (GDI) engines. The presence of soot leads to oil thickening that heavily impacts on friction coefficient thus enhancing the role of dispersant in controlling soot and related viscosity increase and, indirectly, fuel consumption for long running periods. After an introduction on dispersant technologies, the focus of the paper moves
Lattuada, MarcoManni, MassimoNotari, MarcelloFerraro, GiovanniFratini, Emiliano
The use of carbon-free fuels, such as ammonia or hydrogen, or at least carbon neutral fuels, such as green methane or methanol is one of the most important paths in the development of low-carbon internal combustion engines (ICE). Especially for large, heavy-duty engines, this is a promising route, as replacing them with battery electric or fuel cell drives poses even greater challenges, at least for the time being. For some applications or areas of the world, small ICEs for trucks, passenger cars or off-road vehicles, operated with alternative fuels will still remain the means of choice. One of the biggest challenges in the development of hydrogen combustion engines is achieving high compression ratios and mean effective pressures due to combustion anomalies, caused by the low ignition delay and broad flammability limit of hydrogen. Oil droplets are considered to be one of the main triggers for pre-ignition and knocking. This paper will give a brief introduction, showing the results of
Rossegger, BernhardGrabner, PeterGschiel, KevinVareka, Martin
With all the environmental concern of diesel fuelled vehicle, it is a challenge to phase out them completely specifically from Heavy duty application. Most pragmatic solution lies in solutions which improves the fuel economy and reduce the carbon emission of existing diesel fuelled vehicle fleet and retain the economic feasibility offered by present diesel fuelled vehicle fleets. With implementation of Bharat Stage IV (BS VI) emission norms across country from April 2020, supply of BS VI complaint diesel fuel started and BS VI complaint vehicles with upgraded engine technologies and after treatment devices started to come which made present vehicle fleets heterogeneous with substantive number of BS IV vehicle. Beside improvement of engine technologies, existing BS IV vehicle fleet performance can be enhanced through improved fuel and lubricants solutions. The present research work is a step towards improving the fuel economy of existing BS IV diesel vehicles through the intervention of
Mishra, Sumit KumarSingh, Punit KumarChakradhar, MayaSeth, SaritaSingh, SauhardArora, AjayHarinarain, Ajay KumarMaheshwari, Mukul
The aim of this work was to investigate the influence of different combinations of engine oil and oil additive as well as additivated and unadditivated fuel on particulate emissions in gasoline engines. To accomplish this, load, speed, and type of oil injection were varied on a single-cylinder engine, and the influence on particle number concentration and size distribution were evaluated. The tests were supplemented by an optical investigation of their in-cylinder soot formation. The investigation of fuel additives showed no significant differences compared to the reference fuel without additives. However, in the case of oil additives, detergents led to a significant increase in the number of particles in the <20 nm range. This effect occurred when used as both a single additive and a component in the standard engine oil. While viscosity improvers also lead to a measurable, but less pronounced, increase in the particle number concentration, no significant influence can be determined
Böhmeke, ChristianHeinz, LukasWagner, UweKoch, Thomas
Shell Rotella hosted journalists at the National Tractor Pulling Championships in Bowling Green, Ohio, in August, where the company was sponsoring tractors run by Koester Racing in the mini-modified division. Karin Haumann, OEM technical manager of Shell Global Solutions, was onsite and spoke with TOHE about the approaching proposed category 12 (PC-12) heavy-duty diesel engine oil category. PC-12 engine oils are in development and will be licensed for use on January 1, 2027. The current engine oil categories, CK-4 and FA-4, were introduced in 2016. Development of the new category is necessary due to advancements in engine technology, and it aligns with stricter emissions regulations that begin in 2027, said Haumann, who serves as chairperson of the API new category development team. “As diesel engine technology evolves, they require oils that offer increased oxidation performance and wear reduction, can handle higher temperatures, and improve fuel economy,” she said. Lubricant
Gehm, Ryan
This study explores the effectiveness of two machine learning models, namely multilayer perceptron neural networks (MLP-NN) and adaptive neuro-fuzzy inference systems (ANFIS), in advancing maintenance management based on engine oil analysis. Data obtained from a Mercedes Benz 2628 diesel engine were utilized to both train and assess the MLP-NN and ANFIS models. Six indices—Fe, Pb, Al, Cr, Si, and PQ—were employed as inputs to predict and classify engine conditions. Remarkably, both models exhibited high accuracy, achieving an average precision of 94%. While the radial basis function (RBF) model, as presented in a referenced article, surpassed ANFIS, this comparison underscored the transformative potential of artificial intelligence (AI) tools in the realm of maintenance management. Serving as a proof-of-concept for AI applications in maintenance management, this study encourages industry stakeholders to explore analogous methodologies. Highlights Two machine learning models, multilayer
Pourramezan, Mohammad-RezaRohani, Abbas
This SAE Standard defines the limits for a classification of engine lubricating oils in rheological terms only. Other oil characteristics are not considered or included.
Fuels and Lubricants TC 1 Engine Lubrication
In this paper, we present a novel algorithm designed to accurately trigger the engine coolant flow at the optimal moment, thereby safeguarding gas-engines from catastrophic failures such as engine boil. To achieve this objective, we derive models for crucial temperatures within a gas-engine, including the engine combustion wall temperature, engine coolant-out temperature, engine block temperature, and engine oil temperature. To overcome the challenge of measuring hard-to-measure signals such as engine combustion gas temperature, we propose the use of new intermediate parameters. Our approach utilizes a lumped parameter concept with a mean-value approach, enabling precise temperature prediction and rapid simulation. The proposed engine thermal model is capable of estimating temperatures under various conditions, including steady-state or transient engine performance, without the need for extra sensors. Moreover, it exhibits greater robustness compared to temperature estimation systems
Chang, InsuSun, MinEdwards, David
Recent automobile engines are equipped with many devices that are driven by oil pressure. Generally, engine oil is used for oil pressure, and in addition to its conventional functions of lubrication and cooling, etc., it also plays an important role in accurately driving such devices. One of the factors that can interfere with the characteristics of engine oil is air contamination. Excessive air contamination can cause issues with driving devices. Although there are various factors that contribute to air contamination, this paper focuses on, and attempts to help predict, the air generated by engine oil falling and colliding with the surface of the oil in the oil pan as it returns from the top to the bottom of the engine. Using the particle method as the prediction method, the coupled Moving Particle Simulation (MPS) and Discrete Element Method (DEM) calculations were used to represent the generation of air. Basic tests were conducted to computationally reproduce the behavior of each of
Sato, KenjiTakano, Junpei
Due to the global drive for carbon neutrality, passenger vehicle gasoline engines are transitioning to higher levels of electrification, such as hybrid electric vehicles and plug-in hybrid electric vehicles, HEVs and PHEVs. Compared with conventional internal combustion engine (ICE) vehicles, the HEV or PHEV engine whilst in ICE only operation, typically operates for multiple shorter periods, in turn the engine coolant and lubricant temperatures are lower. Conventional internal combustion engines are often able to yield valuable fuel economy benefits by selecting appropriate engine lubricating oils, typically employing reduced viscosity and suitable additives. There are commercial engine tests available for measurement, often in an engine test cell for precision. Steady state testing is also a simplified option. Such efforts require care, as the accurate measurement is technically and practically challenging. This level of difficulty is again increased by the further complication of
Butcher, RichardBradley, NathanJamieson, MatthewChambers, Thomas
The need for even more efficient internal combustion engines in the road transportation sector is a mandatory step to reduce the related CO2 emissions. In fact, this sector impacts significantly on greenhouse gases worldwide, and the path toward hybrid and electric powertrains has just begun. In particular, in heavy-duty vehicles the full electrification of the powertrain is far to be considered as a really feasible alternative. So, internal combustion engines will still play a significant role in the near/medium future. Hence, technologies having a low cost to benefits (CO2 reduction) ratio will be favorably introduced in existing engines. Thermal management of engines is today a recognized area of research. Inside this area, the interest toward the lubricant oil has a great potential but not yet fully exploited. Engine oil is responsible of the mechanical efficiency of the engine which has a significant potential of improvement. A faster warm-up during a daily urban trip when the
Di Giovine, GiammarcoDi Battista, DavideCipollone, Roberto
Using the recycled waste oils are to be focused for the protection of environment by reducing the land pollution and disposal costs. This study is to use the recycled waste engine oil, waste cooking oil and waste plastic oil along with Bio-butanol from the waste cut vegetables and fruits. Initially, properties and solubility were tested for choosing a suitable blend for fueling into diesel engine from various proportions. These three blends from the base of three waste oils are then tested by modifying and standard engine operating parameters for performance. The properties tests results as 18% of waste engine oil (by volume) with bio-butanol, 16% of waste cooking oil (by volume) with bio- butanol and 24% of waste plastic oil (by volume) with bio-butanol are found competent for fueling engine. These blends produces low efficiency in lower brake powers and the emissions of smoke, hydrocarbons and carbon monoxide are also higher during the operation under standard parameters. To upkeep
B, PrabakaranYasin, Mohd Hafizil Mat
Sustainability has evolved from being just a niche engagement to a fundamental necessity. The reduction of carbon emissions from aspects of human activity has become desirable for its ability to mitigate the impact of climate change. The Transportation industry is a critical part of the global economy – any effort to curb emissions will have a significant impact on CO2 reduction. Engine lubricant can play an efficient and key role to enhance powertrain performance that have undergone significant hardware changes to reduce emissions. As part of a significant collaborative programme between Tata Motors and Infineum, a new engine oil formulation SAE 5W-30 API FA-4 has been developed and commercially introduced for use in the modern Bharat Stage 6 Phase 2 engines. Introduction of SAE 5W-30 API FA-4 engine oil for Tata Commercial Vehicle application is a step towards delivering a sustainable option beyond improved fuel economy, longer drain interval and enhanced engine wear protection
Tyagarajan, SethuramalingamSingh, SamsherThanapathy, Saravana RajaBondre, SushilPollington, MarkLim, Pei YiMadan, Lalit
The lubrication system of an internal combustion engine is a crucial component that performs a variety of functions, including lowering friction, cooling, supporting the load, and cleaning debris from the engine’s various moving components. Oil aeration refers to the phenomenon of trapping air bubbles in lubricating oil. High oil aeration can have a detrimental effect on engine performance since modern engines are equipped with parts such as VVT, HLA, RFF, PCJ, LCJ, and other components; whose operation is substantially impacted by the amount of air in circulating oil. In this study, an Inline 4-cylinder NA DOHC gasoline engine was tested with a densimeter-type aeration measuring machine. Test equipment layout which consists of hoses of various diameters and lengths were designed, fabricated, and instrumented to operate under different test conditions. Visual observations and quantitative measurements of oil aeration were performed in the oil sump. The purpose of this study is to
Attri, MayankYadav, VimalKamboj, Jagdish
The need and dependency on objective measurements are increasing rapidly across all industries for reliable and faster data for product validation, and the automotive industry is no different. Objective measurements are becoming increasingly popular than subjective evaluation as they offer objectivity and repeatability. Typical industry practice for structural validation is to acquire the vehicle responses, viz. spindle accelerations, wheel displacements, wheel forces, speed, strain at a few critical locations, and others as per the requirement. Vehicle responses are usually acquired on specific road surfaces, test tracks, and proving grounds. Prior to the tests or measurements, the vehicles are configured as per the company's recommendation, such as tire pressure, camber angles, engine oil, coolant oil type and quantity, load, and load distribution, to name a few. The test vehicles with which these measurements are carried are usually only with these vehicle settings. However, the
Polisetti, Sagar
This specification covers a fluorocarbon (FKM) elastomer that can be used to manufacture product in the form of sheet, strip, tubing, extrusions, and molded shapes. For molded rings, compression seals, molded O-ring cord, and molded-in-place gaskets for aeronautical and aerospace applications, use the AMS7259 specification.
AMS CE Elastomers Committee
This work for the Coordinating Research Council (CRC) explores dependencies on the opportunity for fuel to impinge on internal engine surfaces (i.e., fuel–wall impingement) as a function of fuel properties and engine operating conditions and correlates these data with measurements of stochastic preignition (SPI) propensity. SPI rates are directly coupled with laser–induced florescence measurements of dye-doped fuel dilution measurements of the engine lubricant, which provides a surrogate for fuel–wall impingement. Literature suggests that SPI may have several dependencies, one being fuel–wall impingement. However, it remains unknown if fuel-wall impingement is a fundamental predictor and source of SPI or is simply a causational factor of SPI. In this study, these relationships on SPI and fuel-wall impingement are explored using 4 fuels at 8 operating conditions per fuel, for 32 total test points. The fuels were directly injected at two different injection timings: an earlier injection
Splitter, DerekBoronat Colomer, VicenteNeupane, SnehaPartridge, William
On a 1.5L TGDI gasoline engine bench(without GPF), 4 lubricant oils A/B/C/D with different sulfated ash content (1.1wt.%/0.8wt.%/0.7wt.%/0.5wt.%) were used to test the impact on the emission of PN and PM under WLTC condition. In the test results, the PN and PM values of Oil A are the largest, 7.12E+12 p/km and 2.60mg/km respectively, the PN and PM values of Oil B and C are the equivalent, 5.58E+12 p/km&5.72E+12 p/km,1.81 mg/km & 2.03 mg/km respectively, and the PN and PM values of Oil D are 5.38E+12 p/km and 1.65mg/km respectively. The test results indicate that the sulfated ash content of engine oil affects the particulate emission level of the engine. Oil with high sulfated ash content(1.1 wt.%) has high emission values(PN&PM); Oils with low sulfated ash content (0.8wt.%) have lower emission values (PN&PM). When the sulfated ash content of the oil is below 0.8wt.%, there is almost no significant difference in emission values (PN&PM).
Ling, LeiSun, RuiyuXu, Jinshan
The On-Board Diagnostics (OBD) system can detect problems with the vehicle’s engine, transmission, and emissions control systems to generate error codes that can pinpoint the source of the problem. However, there are several wear and tear parts (air filter, oil filter, batteries, engine oil, belt/chain, clutch, gear tooth) that are not diagnosed but replaced often or periodically in motorcycles/ power sports applications. Traditionally there is a lack of availability of in-field and on-board assistive tools to diagnose vehicle health for 2wheelers. An alert system that informs the riders about health and remaining useful life of their motorcycle can help schedule part replacements, ensuring they are always trip-ready and have a stress-free ownership and service experience. This information can also aid in the correct assessment during warranty claims. With the increase of onboard sensors on vehicles, there has been a notable increase in the availability of condition-monitoring data
Vijaykumar, SrikanthSabu, AbhijithPRADHAN, DEBAYANShrivardhankar, Yash
Using ammonia as a fuel has been experimented since the nineteenth century in different types of ground and air vehicles but it was never able to replace fossil- based hydrocarbon fuels at scale. Nevertheless, this concept has gained a new momentum following recent policies to significantly reduce greenhouse gas emissions in fuel intensive sectors such as power generation and transportation. Following the strategy of the International Maritime Organization (IMO) to reduce the carbon intensity from international shipping by at least 50 percent by 2050, the implementation of zero-carbon fuels on a tank to wake basis, such as ammonia, is being strongly considered by the maritime ecosystem. Additionally, initiatives from other industries have emerged recently, demonstrating a broader interest in ammonia fuel for sustainable operations such as heavy duty and off-road applications. Whereas its toxicity and handling protocols fuel numerous discussions and working groups, ammonia reactivity
Obrecht, NicolasGriffaton, BrunoRappo, Maria
The automotive industry is continuously looking to improve fuel economy in order to meet stringent government regulations around carbon emissions reduction. To achieve fuel economy targets, OEMs have explored lowering the viscosity of the engine oil to reduces energy losses. Many OEMs are currently designing engines that operate with 0W-20 viscosity engine oil and lower. Recently, ultra-low viscosity engine oil categories, such as JASO GLV-1, have been developed to further improve fuel economy through fluid design (reduction of friction of the engine oil). However, as the viscosity of the fluid is reduced, the fluid’s ability to control viscosity and wear is often also reduced. This paper details a holistic formulation approach to deliver improved fuel economy without compromising wear and oxidative viscosity control. Advanced fuel economy studies were conducted which combined simulated fuel economy modelling with a fired engine fuel economy test to provide fluid formulations with
Garelick, KenField, SamAnderson, William B.Engelman, KristiHoshino, Hidetaka
In order to confirm friction and fuel economy performance of engine oils, laboratory bench tests, motored engine tests and chassis dynamo tests with HEV under WLTP were conducted. The fuel economy improvement effect of reducing viscosity and MoDTC were confirmed under these tests. Moreover, MoDTC (std.) exhibited excellent fuel economy improvement effect compared to MoDTC (L) under low temperature condition particularly. Low viscosity oils formulated with MoDTC (std.) showed superior fuel economy performance even at HEV with relatively lower oil temperatures in this study.
Takano, KoichiIino, ShinjiYamamoto, KenjiMoriizumi, Yukiya
Improving fuel efficiency is a major goal of the automotive industry. One approach is to lower an engine oils viscosity grade raising durability concerns and requiring engine re-design. Study [6] demonstrates that higher fuel efficiency is also achieved in the same SAE grade by increasing the Noack evaporation loss and using advanced viscosity index improvers like comb polymers. Increased Noack volatility might raise concerns of oil consumption. Evonik investigated this in a state-of-the- art engine using a test matrix including multiple Noack volatilities, SAE grades and base stocks. Additionally base oil viscosities and VII treat rate were investigated. All parameters showed no correlation with engine oil consumption. This allows to maximize fuel efficiency within the same SAE grade through optimized viscometric performance.
Seemann, MichaelStrube, SabrinaHutchinson, PhilEisenberg, BorisMelchior, HelmutMarkwart, JensKempf, StephanieSchimmel, ThomasMori, Masahito
With the increasing regulatory stringency on emission reduction and efficiency improvement, the automotive industry has experienced a significant shift in the hardware platform. Among technology candidates, hybrid technology is still considered one of the most viable approaches to meet the regulation requirement (both emission and efficiency) at an affordable cost to both the customer and the manufacturer. New engine operating characteristics are expected in hybrid applications which would potentially result in different performance requirements for the engine oil. Therefore, it is crucial to understand those characteristics of a hybrid powertrain, from which the insights of fluid requirements can be derived. A hybrid vehicle test study was conducted to evaluate the engine operation of different kinds of hybrid platforms. The hybrid operation has been well characterized by thoroughly analyzing parameters on each engine. The temperature profile from each hybrid powertrain was evaluated
Garelick, KennethShao, HuifangHidetaka, HoshinoLi, YanfeiShuai, Shijin
Heavy-duty transportation is one of the sectors that contributes to greenhouse gas emissions. One way to reduce CO2 emissions is to use drop-in fuels. However, when drop-in fuels are used, i.e., higher blends of alternative fuels are added to conventional fuels, solubility problems and precipitation in the fuel can occur. As a result, insolubles in the fuel can clog the fuel filters and interfere with the proper functioning of the injectors. This adversely affects engine performance and increases fuel consumption. These problems are expected to increase with the development of more advanced fuel systems to meet upcoming environmental regulations. This work investigates the composition of the deposits formed inside the injectors of the heavy-duty diesel engine and discusses their formation mechanism. Injectors with internal deposits were collected from field trucks throughout Europe. Similar content, location and structure were found for all the deposits in the studied injectors. The
Pach, MayteHittig, HenrikCouval, RomainKusar, HenrikEngvall, Klas
Engine oils and their additives are formulated to meet required performance areas such as lubrication, detergency, dispersancy, anti-wear, and so on. Understanding degradation of engine oil additives is important to formulate oils with long time durability. Engine oil additives have been found to affect abnormal combustion in turbocharged gasoline direct injection (TGDI) engines, called low speed pre-ignition (LSPI). Some of metal containing additives such as zinc dithiophosphates (ZnDTP) and molybdenum dithiocarbamates (MoDTC) have been found to reduce LSPI events. In this study, we investigated degradation of ZnDTP and MoDTC in gasoline engine operation and effects of the degradation on LSPI performance.
Onouchi, HisanariTanaka, IsaoElliott, IanKetterer, Nicole
In modern internal combustion engines, oil represents a real component. It carries out the essential tasks: lubrication and heat dissipation. On one hand, it directly influences the vehicle performances and, on the other hand, it is subjected to an unavoidable dirtying and degradation process during operation. For these reasons, it requires a dedicated maintenance program which traditionally consists in a scheduled substitution without the analysis of its actual state. To this purpose, the current work aims to show the potential use of nanostructured metal oxides (MOX) gas sensors to develop a new online, on-board, non-invasive device for the oil monitoring. Indeed, they could analyze the oil vapors from the recirculation pipe directly in the engine head. For this analysis, two traditional engine oils have been considered and used in the same test bench. It is equipped with a small spark ignition engine operated in different conditions and fed in turn with different fuels or blends
Fioravanti, AmbraSequino, LuigiSementa, Paolo
Engine cold start is characterized by sub-optimal combustion efficiency due to the low temperature of the combustion chamber; this heavily increases engine raw emissions at start. One driving phenomenon is a limited fuel evaporation rate. Consequently, a liquid fuel film remains on the piston top at ignition. Liquid fuel deposited on the piston top is a well-known cause of “pool-fire”, leading to high levels of particle emissions; a problem particularly noticeable with bio-based renewable fuels. Engine piston pre-heating can be deployed to prevent or limit the formation of such fuel film and associated pollutants. In this work a practical technique is proposed to effectively pre-heat the pistons immediately before engine cold start. The device consists of a pressurized-heated oil buffer which pre-heats the pistons via the existing piston cooling nozzles. The device provides further benefits in emissions and fuel consumption in two ways: 1) the warm oil pre-lubricates the engine working
Bovo, MirkoMubarak Ali, Mohammed Jaasim
The future of the combustion engine will to some extent depend on the use of CO2-neutral eFuels to avoid further fossil CO2 emissions. Also, the use of synthetic fuels offers the possibility to improve various engine properties, such as thermodynamics, EGR compatibility or emissions, through targeted influence on specific fuel properties. To this end, a methodology was generated to attribute various engine effects to particular fuel properties. Therefore, the Chair of Combustion Engines (LVAS) at the TU Dresden developed a fully automated testbed for motorcycle engines, including clutch and gear switching mechanisms. Hitherto, emissions measurements for motorcycles were done mostly on chassis dynamometers, with the disadvantage of a large spread of results. Due to the lack of consistency the analysis of fuel properties was not possible. To prove the developed methodology, a test campaign including 15 different gasoline fuels was elaborated in cooperation with KTM R&D GmbH. Before
Graßmeyer, MariusAtzler, Frank
A viable option to reduce global warming related to internal combustion engines is to use renewable fuels, for example methanol. However, the risk of knocking combustion limits the achievable efficiency of SI engines. Hence, most high load operation is run at sub-optimal conditions to suppress knock. Normally the fuel is a limiting factor, however when running on high octane fuels such as methanol, other factors also become important. For example, oil droplets entering the combustion chamber have the possibility to locally impact both temperature and chemical composition. This may create spots with reduced octane number, hence making the engine more prone to knock. Previous research has confirmed a connection between oil droplets in the combustion chamber and knock. Furthermore, previous research has confirmed a connection between oil droplets in the combustion chamber and exhaust particle emissions. However, the co-variation between oil originating particle emissions and knock has not
Ainouz, FilipAdlercreutz, LudvigCronhjort, AndreasStenlaas, Ola
The increasing environmental concern is leading to the need for innovation in the field of internal combustion engines, in order to reduce the carbon footprint. In this context, hydrogen is a possible mid-term solution to be used both in conventional-like internal combustion engines and in fuel cells (for hybridization purposes), thus, hydrogen combustion characteristics must be considered. In particular, the flame of a hydrogen combustion is less subjected to the quenching effect caused by the engine walls in the combustion chamber. Thus, the significant heating up of the thin lubricant layer upon the cylinder liner may lead to its evaporation, possibly and negatively affecting the combustion process, soot production. The authors propose an analysis which aims to address the behavior of different typical engine oils, (SAE0W30, SAE5W30, SAE5W40) under engine thermo-physical conditions considering a large hydrogen-fuelled engine. The operative conditions are obtained by means of
De Renzis, EdoardoMariani, ValerioBianchi, Gian MarcoFalfari, StefaniaCazzoli, Giulio
We introduce novel approaches utilizing Physics Informed Machine Learning (PIML) for advanced diagnostics & prognostics of ground combat vehicles (CV). Specifically, we present the development of a PIML model designed to predict the health of engine oil in diesel engines. The condition of engine oil is closely linked to engine wear, thus serving as a crucial indicator of engine health. Our model integrates a physics-based simulation of engine wear in diesel engines, leveraging a time history of engine oil viscosity and engine speed as key input parameters. Furthermore, we conduct uncertainty quantification to assess the impact of varying parameters on engine oil health prediction. Additionally, our model demonstrates the capability to enhance low-fidelity physics models through the integration of a limited set of experimental data. By combining data-driven techniques with physics-based insights, our approach offers enhanced diagnostics and prognostics capabilities for ground combat
Betts, Juan F.Alizadeh, Arash
Assessing the functional quality of an engine lubricant through real-time sensing could pave the way for development of comprehensive engine health monitoring systems. In this study, a permittivity-based, commercial off-the-shelf (COTS) oil quality sensor was implemented in the lubricant flow of a diesel engine after detailed evaluation on a benchtop test facility. The sensor was mounted on the oil filter housing of the engine in the post-filter oil flow, and its implementation required no modifications to the engine block. Simultaneously, the lubricant flow was visualized by incorporating a novel test cell in the oil flow path. Both the sensor assembly and the flow visualization cell were fully characterized on the benchtop facility prior to implementation on the engine. In these experiments, fresh and used samples of the engine’s recommended oil were tested, and the sensor’s oil quality measurements showed noticeable differences between the engine and benchtop studies, a feature
Schepner, CameronSmith, AdamSchafer, DavidAnilkumar, Amrutur
Items per page:
1 – 50 of 932