Browse Topic: Engine lubricants
ABSTRACT The Department of Defense is a major consumer of petroleum products – over 700 million gallons per day. While the majority of fuel consumed is for aircraft, in terms of logistics and exposure of personnel to hazardous conditions, the amount of fuel consumed in ground vehicles is considerable, with the cost (in-theatre, delivered) ranging from $100 to $600/gallon. This paper addresses the impact that parasitic friction mechanisms (boundary lubrication and lubricant viscosity) have on engine friction and overall vehicle efficiency. A series of mechanistic models of friction losses in key engine components was applied to investigate the impact of low-friction technologies on the fuel consumption of heavy-duty, on-road vehicles. The results indicate that fuel savings in the range of 3 to 5% are feasible by reducing boundary friction and utilizing low-viscosity engine lubricants. The paper will discuss the implications of the studies (as performed for commercial heavy-duty trucks
Shell Rotella hosted journalists at the National Tractor Pulling Championships in Bowling Green, Ohio, in August, where the company was sponsoring tractors run by Koester Racing in the mini-modified division. Karin Haumann, OEM technical manager of Shell Global Solutions, was onsite and spoke with TOHE about the approaching proposed category 12 (PC-12) heavy-duty diesel engine oil category. PC-12 engine oils are in development and will be licensed for use on January 1, 2027. The current engine oil categories, CK-4 and FA-4, were introduced in 2016. Development of the new category is necessary due to advancements in engine technology, and it aligns with stricter emissions regulations that begin in 2027, said Haumann, who serves as chairperson of the API new category development team. “As diesel engine technology evolves, they require oils that offer increased oxidation performance and wear reduction, can handle higher temperatures, and improve fuel economy,” she said. Lubricant
In this paper, we present a novel algorithm designed to accurately trigger the engine coolant flow at the optimal moment, thereby safeguarding gas-engines from catastrophic failures such as engine boil. To achieve this objective, we derive models for crucial temperatures within a gas-engine, including the engine combustion wall temperature, engine coolant-out temperature, engine block temperature, and engine oil temperature. To overcome the challenge of measuring hard-to-measure signals such as engine combustion gas temperature, we propose the use of new intermediate parameters. Our approach utilizes a lumped parameter concept with a mean-value approach, enabling precise temperature prediction and rapid simulation. The proposed engine thermal model is capable of estimating temperatures under various conditions, including steady-state or transient engine performance, without the need for extra sensors. Moreover, it exhibits greater robustness compared to temperature estimation systems
This specification covers a fluorocarbon (FKM) elastomer that can be used to manufacture product in the form of sheet, strip, tubing, extrusions, and molded shapes. For molded rings, compression seals, molded O-ring cord, and molded-in-place gaskets for aeronautical and aerospace applications, use the AMS7259 specification
Engine cold start is characterized by sub-optimal combustion efficiency due to the low temperature of the combustion chamber; this heavily increases engine raw emissions at start. One driving phenomenon is a limited fuel evaporation rate. Consequently, a liquid fuel film remains on the piston top at ignition. Liquid fuel deposited on the piston top is a well-known cause of “pool-fire”, leading to high levels of particle emissions; a problem particularly noticeable with bio-based renewable fuels. Engine piston pre-heating can be deployed to prevent or limit the formation of such fuel film and associated pollutants. In this work a practical technique is proposed to effectively pre-heat the pistons immediately before engine cold start. The device consists of a pressurized-heated oil buffer which pre-heats the pistons via the existing piston cooling nozzles. The device provides further benefits in emissions and fuel consumption in two ways: 1) the warm oil pre-lubricates the engine working
Assessing the functional quality of an engine lubricant through real-time sensing could pave the way for development of comprehensive engine health monitoring systems. In this study, a permittivity-based, commercial off-the-shelf (COTS) oil quality sensor was implemented in the lubricant flow of a diesel engine after detailed evaluation on a benchtop test facility. The sensor was mounted on the oil filter housing of the engine in the post-filter oil flow, and its implementation required no modifications to the engine block. Simultaneously, the lubricant flow was visualized by incorporating a novel test cell in the oil flow path. Both the sensor assembly and the flow visualization cell were fully characterized on the benchtop facility prior to implementation on the engine. In these experiments, fresh and used samples of the engine’s recommended oil were tested, and the sensor’s oil quality measurements showed noticeable differences between the engine and benchtop studies, a feature
This material has resistance to diester-based engine oil (MIL-PRF-7808) and fuel, but usage is not limited to such applications. This material is not suitable for use in synthetic phosphate ester based hydraulic fluids (AS1241) or helicopter transmission lubricating oils (DOD-PRF-85734, MIL-PRF-32538). For gas turbine engine lubricating oils (AS5780, MIL-PRF-23699), resistance varies by class and should be evaluated individually (see Note regarding high performance oils). This material has a typical service temperature range of -70 to +392 °F (-56.7 to +200 °C) for Class 1 and Class 2 and -70 to +437 °F (-56.7 to +225 °C) for Class 3. The service temperature range of the material is a general temperature range, but the presence of particular fluids and specific design requirements may modify this range. Each application should be considered separately. It is the responsibility of the user to determine that this specification is appropriate for the environments (temperature range
THIS STANDARD ESTABLISHES THE DIMENSIONAL AND VISUAL QUALITY REQUIREMENTS, LOT REQUIREMENTS AND PACKAGING AND LABELING REQUIREMENTS FOR O-RINGS MOLDED FROM AMS7379 FLUOROCARBON (FKM) RUBBER. IT SHALL BE USED FOR PROCUREMENT PURPOSES
This SAE Standard specifies requirements for vulcanized rubbers in sheet form for use as standards in characterizing the effect of test liquids and service fluids. The appendices contain the standard reference elastomer formulas. The property changes of the SRE in contact with the indicated fluid under specified test conditions are the responsibility of the user. See 7.3 and Table 1. This standard is not designed to provide formulations of elastomeric product compositions for actual service
This SAE Standard provides the testing and functional requirements guidance necessary for a leak detection device that uses any non-A/C refrigerant tracer gas, such as helium or a nitrogen-hydrogen blend, to provide functional performance equivalent to a refrigerant electronic leak detector. It explains how a non-refrigerant leak detector’s calibration can be established to provide levels of detection equal to electronic leak detectors that meet SAE J2791 for R-134a and SAE J2913 for R-1234yf
Items per page:
50
1 – 50 of 912