Browse Topic: Energy conservation

Items (4,237)
European Initiatives addressing High efficiency and low cost electric motors for circularity and low use of rare resources2025-01-8806To be published on 04/01/2025
The automotive industry is amidst an unprecedented multi-faceted transition striving for more sustainable passenger mobility and freight transportation. The rise of e-mobility is coming along with energy efficiency improvements, CO2 and non-exhaust emission reductions, driving/propulsion technology innovations, and a hardware-software-ratio shift in vehicle development for road-based electric vehicles. Current R&D activities are focusing on electric motor topologies and designs, sustainability, manufacturing, prototyping, and testing. This is leading to a new generation of electric motors, which is considering recyclability, reduction of (rare earth) resource usage, cost criticality, and a full product life-cycle assessment, to gain broader market penetration. This paper outlines the latest advances of multiple EU-funded research projects under the Horizon Europe framework and showcases their complementarities to address the European priorities as identified in the 2ZERO SRIA . The E
Armengaud, EricRatz, FlorianMuñiz, ÁngelaPoza, JavierGarramiola, FernandoAlmandoz, GaizkaPippuri-Mäkeläinen, JenniClenet, StéphaneMessagie, MaartenD’amore, LeaLavigne Philippot, MaevaRillo, OriolMontesinos, DanielVansompel, HendrikDe Keyser, ArneRomano, ClaudioMontanaro, UmbertoTavernini, DavideGruber, PatrickRan, LiaoyuanAmati, NicolaVagg, ChristopherHerzog, MaticWeinzerl, MartinKeränen, JanneMontonen, Juho
The practice of vehicle platooning for managing mixed traffic can greatly enhance safety on the roads, augment overall traffic flow, and boost fuel efficiency, garnering considerable focus in transportation. Existing research on vehicle platoon control of mixed traffic has primarily focused on using the state information of the leading or head vehicle as control input for following vehicles without accounting for the driving variability of Human-driven Vehicles (HDVs), which does not conform to the driving conditions of vehicles in reality. Inspired by this, this paper presents a car-following model for Connected and Automated Vehicles (CAVs) that utilizes communication with multiple preceding vehicles in mixed traffic. The study further investigates the impact of parameters such as the speed and acceleration of preceding vehicles on the car-following behavior of CAVs, as well as the overall effect of different CAV penetration rates on mixed traffic flow. Firstly, a mixed-vehicle
Peng, FukeHuang, Xin
Electric vehicles (EVs) represent a promising solution to reduce environmental issues and decrease dependency on fossil fuels. The main drawback associated with the direct torque control (DTC) scheme is that it is incapable of improving the efficiency and response time of the EVs. To overcome this problem, integrating deep learning (DL) techniques into DTC offers a valuable solution to enhance the performance of the drive system of EVs. This article introduces three control methods to improve the output for DTC-based BLDC motor drives: a traditional proportional–integral for speed controller (speed PI), a neural network fitting (NNF)-based speed controller (speed NNF), and a custom neural (CN) network-based speed controller (speed CN). The NNF and CN are DL techniques designed to overcome the limitations of conventional PI controllers, such as retaining the percentage overshoot, settling times, and improving the system’s efficiency. The CN controller reduced the torque ripple by 15
Patel, SandeshYadav, ShekharTiwari, Nitesh
Biomass fuels, such as sawdust and groundnut shells, are increasingly recognized as sustainable alternatives to fossil fuels. However, their high moisture content and loose structure result in low thermal efficiency. To improve performance, pellet forms of these fuels are often used. Naturally available raw and pellet forms of Sawdust, groundnut shell fuels have been utilized in this study. This study evaluates and compares the thermal efficiency of a gasifier cook stove and emissions from the combustion of raw and pellet forms of biomass fuels. It was found that the burning rate and firepower increase significantly with the use of pellet from of fuels. Sawdust pellets exhibited a highest thermal efficiency of 22.41%. The hydrocarbon (HC) levels for groundnut shell pellets were observed to range between 1 and 5 parts per million (ppm), while for sawdust pellets, it was observed to range from 1 to 6 ppm, indicating the preferable usage of pellets as fuel over raw form of biomass fuel.
Prasad, Malladi JogendraVangipurapu, Bapi Raju
This study investigates the thermal buckling behavior of axially layered functionally graded material (FGM) thin beams with potential applications in automotive structures. The FGM beam is constructed from four axially stratified sections, with the proportional amount of metal and ceramic fluctuating through the thickness. The buckling analysis is carried out for three different support configurations: clamped-clamped, simply supported-simply supported, and clamped-simply supported. The primary objective is to identify the optimal thermal buckling temperature of the FGM thin beam using the Taguchi optimization method. Beam arrangements are established using a Taguchi L9 orthogonal array and analyzed using finite element software (ANSYS). Layers 1-4 of the axially layered beam are considered process parameters, while the thermal buckling temperature is the response parameter. Minitab software performs an Analysis of Variance (ANOVA) with a 95% confidence level to identify the most
Pawale, DeepakBhaskara Rao, Lokavarapu
Items per page:
1 – 50 of 4237