Model-Based Analysis of V2G Impact on Battery Degradation

2017-01-1699

03/28/2017

Features
Event
WCX™ 17: SAE World Congress Experience
Authors Abstract
Content
Vehicle-to-Grid (V2G) service has a potential to improve the reliability and stability of the electrical grid due to the ability of providing bi-directional power flow from/to the grid. However, frequent charging/discharging may impact the battery lifetime. This paper presents the analysis of battery degradation in three scenarios. In the first scenario, different battery capacities are considered. In the second scenario, the battery degradation with various depth of discharge (DOD) are studied. In the third scenario, the capacity loss due to different charging regime are compared. The charging/discharging of plug-in electric vehicles (PEVs) are simulated in a single-phase microgrid system integrated with a photovoltaics (PV) farm, an energy storage system (ESS), and ten electric vehicle service equipment (EVSE). The battery degradation model is an energy throughput model, which is developed based on the Arrhenius equation and a power law relationship between time and capacity fading. The simulation results show that V2G service potentially increases the PEV battery degradation. With the same DOD, higher battery capacity can increase the degradation degree. For a specific PEV battery, the higher DOD, higher temperature, and more frequent discharging accelerate the battery degradation to some extent.
Meta TagsDetails
DOI
https://doi.org/10.4271/2017-01-1699
Pages
8
Citation
Wang, L., and Chen, B., "Model-Based Analysis of V2G Impact on Battery Degradation," SAE Technical Paper 2017-01-1699, 2017, https://doi.org/10.4271/2017-01-1699.
Additional Details
Publisher
Published
Mar 28, 2017
Product Code
2017-01-1699
Content Type
Technical Paper
Language
English