Browse Topic: Wiring
The integration of Advanced Driver Assistance Systems (ADAS) into modern vehicles necessitates innovative solutions for interior packaging that balance out safety, performance, and ergonomic considerations. This paper introduces an inverted U-shaped steel tube cross car beam (CCB) as a superior alternative to traditional straight tube designs, tailored for premium vehicle instrument panels. The U-shaped geometry overcomes the limitations of straight tube beams by creating additional packaging space for components such as AR-HUDs, steering columns, HVAC systems, and electronic control units (ECUs). This geometry supports efficient crunch packaging while accommodating ergonomic requirements like H-point, eyeball trajectory, and cockpit depth for optimal ADAS component placement. The vertical alignment of the steering column within the U-shaped design further enhances space utilization and structural integrity. This study demonstrates that the inverted U-shaped CCB is a transformative
The integration of hydrogen (H2) as a fuel source in internal combustion engines (ICE) necessitates stringent design measures to mitigate leakage risks and ensure operational safety. This study focuses on the design optimization of vanity cover for hydrogen engines. Computational fluid dynamics (CFD) analysis is carried out to assess and control hydrogen leakage through fuel rail connections, injector interfaces and associated high pressure fuel system components. Detailed modelling of hydrogen flow behavior, diffusion characteristics of leaked hydrogen are simulated for worst case scenarios. Design iterations targeted improvement in ventilation pathways, strategic placement of vent holes, and internal flow management to minimize localized hydrogen buildup. The final design achieved hydrogen concentration, which was less than 4% satisfying the Product safety Hazard Analysis (PSHA) threshold for hydrogen engines. This paper validates the critical role of CFD driven design methodology in
The fuses identification in power distribution boxes, which demands gathering and synthesizing information from diverse sources, represents a significant time consumption for engineers. Furthermore, the inherently repetitive nature of this manual task renders it susceptible to inaccuracies. To address this limitation, this paper examines the application of Large Language Models (LLMs) in the form of chat-bots for analyzing and optimizing vehicular Electrical Distribution Systems (EDS). The research investigates the capabilities of such a system to process complex EDS data, using Vehicle Manual Owner as a study case, with the goal of identifying optimization opportunities and improving project efficiency. The results of the application of Retriever Augmented Generation (RAG) enhanced the model’s ability to handle domain-specific data and function as a specialist assistant for Power Distribution Boxes. Experiments suggest this automated approach can generate valuable insights, such as
Modern vehicle integration has become exponentially more difficult due to the complicated structure of designing wiring harnesses for multiple variants that have diverse design iterations and requirements. This paper proposes an AI-driven solution for addressing variant complexity. By using Convolutional Networks and Deep Neural Networks (CNN & DNN) to generate harness routing using defined specifications and constraints, the proposed solution uses minimal human intervention, substantially less time, and enables less complexity in designing. AI trained modelled systems can generally even predict failures in production methods which also reduces downtime and increases productivity. The new AI system automatically converts design specifications to manufacturable design specifications to avoid confusion with design parameters, by optimizing concepts with connector placements, grommet fittings, clip alignments, and other tasks. The solution coping with the inherent dynamic complexity of
The intent of the SAE Aerospace Recommended Practice (ARP) is to provide a process for users to identify the part number of AS7928 terminal lugs installed in civilian or military applications, although it can also be used to identify terminals that have been stored incorrectly. This ARP is subject to change to keep pace with experience and technical advances of AS7928 terminals. A current set of tables are provided to list and identify current AS7928 terminal lug configurations per the associated specification detail sheet and terminal lug configuration. Specific configuration details, graphic, size, and marking information for each individual terminal lug is provided to assist the product user with accurate selection for replacement or identification.
This SAE Aerospace Information Report (AIR) defines the areas where incompatibility may exist between the selected wire and the electrical connector in which it is terminated and how to design for compatibility. Refer to ARP914 for a glossary of connection terms.
This SAE Aerospace Information Report (AIR) is limited to the subject of compatibility of wiring as part of aircraft Electrical Wiring and Interconnect Systems (EWIS) installed in and around aircraft fuel tanks.
This SAE Standard establishes the minimum construction and performance requirements for a 15 pole connector between towing vehicles and trailers, for trucks, trailers, and dollies, for 12 VDC nominal applications in conjunction with SAE J2742. The connector accommodates both power and ISO 11992-1 signal circuits along with dual ground wires to accommodate grounding requirements within the constraints of the SAE J2691 terminal capacity.
This SAE Standard establishes the minimum construction and performance requirements for seven conductor 1/8-1/10-5/12 cable for use on trucks, trailers and converter dollies for 12 VDC nominal applications. Where appropriate, the standard refers to two types of cables (Type F and S, described later in the standard), due to the variation in the performance demands of cables used in flexing and stationary applications.
This SAE Standard encompasses connectors between two cables or between a cable and an electrical component and focuses on the connectors external to the electrical component. This document provides environmental test requirements and acceptance criteria for the application of connectors for direct current electrical systems of 60 V or less in the majority of heavy-duty applications typically used in off-highway machinery. Severe applications can require higher test levels or field-testing on the intended application.
For years the NVH community has known that openings in the dash sheet metal, such as holes to pass wire harnesses through, creates an acoustical weak point that limits the potential noise reduction of the dash insulation system. These pass-throughs can also be a source of water leaks into the vehicle’s interior. With internal combustion engines and now electric inverter power plants generating significant high frequency sound, the need to seal this area is vital. By molding a lightweight barrier that draws through the fiber/absorber interior decoupler and dash sheet metal which mates to a secondary seal molded into an outer engine dash decoupler, the two opposing molded barriers meet in the engine compartment and compress together forming a seal around the wire harness. This male/female molded seal replaces the conventional snap in grommet and eliminates noise/water leaks. The system Sound Transmission Loss (STL) is equivalent to similarly insulated sheet metal with no holes
This standard is applicable to the marking of aerospace vehicle electrical wires and cables using ultraviolet (UV) lasers. This standard specifies the process requirements for the implementation of UV laser marking of aerospace electrical wire and cable and fiber-optic cable to achieve an acceptable quality mark using equipment designed for UV laser marking of identification codes on aerospace wire and cable. Wiring specified as UV laser markable subject to AS4373 and which has been marked in accordance with this standard will conform to the requirements of AS50881.
The scope of this report is to capture fundamental principles of selecting a wire size for an aerospace application using the method prescribed in AS50881 and additional calculations, not found in AS50881, to ensure the wire selection will adequately perform in the specific physical and environmental conditions. This report covers wire selection and sizing as part of the electrical wire interconnection systems (EWIS) used in aerospace vehicles. Aerospace vehicles include manned and unmanned airplanes, helicopters, lighter-than-air vehicles, missiles, and external pods. This document does not apply to wiring inside of airborne electronic equipment but shall apply to wiring externally attached to such equipment. Wire selection must consider physical and environmental factors to size wires such that they have sufficient mechanical strength, do not exceed allowable voltage drop levels, are protected by materials or circuit protection devices, and meet circuit current carrying requirements
This specification covers polyvinyl chloride insulated single conductor electric wires made with tin-coated copper conductors or silver-coated copper alloy conductors. The polyvinyl chloride insulation of these wires may be used alone or in combination with other insulating or protective materials.
This ARP specifies the recommended methods of marking electrical wiring and harnesses to aid in the positioning/routing of electrical wiring, harnesses and cable assemblies.
This document defines cables that are used to provide electrical power for U.S. Department of Defense avionics support and test equipment.
This specification covers design requirements, performance requirements, and methods of procurement for tools and associated accessories used to strip aerospace vehicle electrical wire and cable. Aerospace vehicle electrical wire has stranded conductors with protective plating and specialized insulation. Poor quality wire strippers or mismatched blades can compromise the performance of wiring.
This SAE Standard specifies requirements and design guidelines for electrical wiring systems of less than 50 V and cable diameters from 0.35 to 19 mm2 used on off-road, self-propelled earthmoving machines as defined in SAE J1116 and agricultural tractors as defined in ASAE S390.
This SAE Aerospace Recommended Practice (ARP) provides recommended use and installation procedures for bonded cable harness supports.
AS22759 specification covers fluoropolymer-insulated single conductor electrical wires made with tin-coated, silver-coated, or nickel-coated conductors of copper or copper alloy as specified in the applicable detail specification. The fluoropolymer insulation may be polytetrafluoroethylene (PTFE), fluorinated ethylene propylene (FEP), polyvinylidene fluoride (PVF2), ethylene-tetrafluoroethylene copolymer (ETFE), or other Fluoropolymer resin. The fluoropolymer may be used alone or in combination with other insulation materials. These abbreviations shall be used herein. When a wire is referenced herein, it means an insulated conductor (see 7.7).
The automotive PowerNet is in the middle of a major transformation. The main drivers are steadily increasing power demand, availability requirements, and complexity and cost. These factors result in a wide variety of possible future PowerNet topologies. The increasing power demand is, among other factors, caused by the progressive electrification of formerly mechanical components and a constantly increasing number of comfort and safety loads. This leads to a steady increase in installed electrical power. X-by-wire systems1 and autonomous driving functions result in higher availability requirements. As a result, the power supply of all safety-critical loads must always be kept sufficiently stable. To reduce costs and increase reliability, the car manufacturers aim to reduce the complexity of the PowerNet system, including the wiring harness and the controller network. The wiring harness e.g., is currently one of the most expensive parts of modern cars. These challenges are met with a
MIT researchers have developed a battery-free, self-powered sensor that can harvest energy from its environment. Because it requires no battery that must be recharged or replaced, and because it requires no special wiring, such a sensor could be embedded in a hard-to-reach place, like inside the inner workings of a ship’s engine. There, it could automatically gather data on the machine’s power consumption and operations for long periods of time.
Items per page:
50
1 – 50 of 1682