Browse Topic: Wiring

Items (1,682)
Passenger cars are subjected to extensive conditions ranging from driving through wet roads, water puddles, icy roads, and rain. This can affect the performance of different parts over time, one such aspect is the vehicle corrosion, whose impact is felt on a wide spectrum from aesthetics to safety due to loss of material. The general condition for corrosion mainly requires electrolyte to be present on the metal surface, which is transported through self-soiling and foreign soiling. Vehicle soiling is an important aspect for vehicle design. Amongst the many aspects of vehicle soiling, one important aspect is the prediction of water accumulation that enables prediction of corrosion sensitive regions in the vehicle. Power train components like Engine, transmission and corresponding wiring harness are at highest risk of water-wetting, As the vehicle drives through the water puddle the components are not just wet by the direct inflow of water but also by water being splashed by moving
Shukrey, SarthakPattankar, RohanYenugu, Srinivasa
This study discusses the generalized workflow and design techniques for detecting radiated emissions from vehicle electronic systems to ensure an electromagnetic compatible (EMC) vehicle specified by radiated emission standards such as CISPR-12 and CISPR-25. In this work, CST studio suite software is used to examine the vertical polarization in an E vehicle. The results of the radiated emission are plotted as dBμV/m vs Hz to understand the radiation effects generated by different electronic devices across different frequencies. The discussed method serves as a guide for forming a virtual electromagnetic environment where a real vehicle is simulated to study the interference effects and design a suitable filter to reduce the effect of EMI.
Manuelraj, MasilamaniPrasad, SuryanarayanaNarayanan, Siva Suriya
Globally, the share of emissions from transport is 15%, out of which more than 2/3rd emissions are contributed by road transport as per 2014 report of Intergovernmental Panel on Climate Change (IPCC). The need of mitigation measures in transport sector has been realised however the study of life cycle emission needs to be done with the tailpipe emissions so that some holistic solution can be worked upon. Strikingly, in the life cycle studies of a passenger car, it was found that the share of raw materials related to copper is around 50% of the total amount of raw material used and the share of copper in the curb weight of vehicle is just 1%. Also, for an Internal Combustion Engine vehicle (ICE), mostly the copper is used in the wiring harness. In this paper, the life cycle assessment of wiring harness is done to understand the environmental impacts throughout the life cycle stages. The comparative study of aluminium alloy and copper has also been done to know the change in
Kumar, NamanBawase, MoqtikThipse, Sukrut
The automotive wiring harness (length of 4-5 km) is a very important and complex system in the development of a modern car due to lot of new electric & electronic components and sensors. It is a very sensitive material unlike metals and is considered as a composite which is highly anisotropic in nature, as it consists of several different layers of copper/aluminum strands and insulation. Because of insulation, wiring harness exhibits viscous plastic behavior which is crucial in determining the durability and long-term performance of the cables. Material property has a crucial role in determining the behavior of wiring harness after assembly into the car. Wiring harness may undergo Bending, Torsion and Tension loads, causing the stress and strain in the individual electrical wires. The lack of CAE validation of the wiring harness routing may lead to extra costs for the automotive OEMs during product development. This study explains the novel method of Testing the Cables and Bundles
Beesetti, SivaKalkala Balakrishna, PrasadJames Aricatt, JohnShah, DipamTas, OnurKrogmann, Stephan
The rapid evolution of electric vehicles (EVs) has amplified the demand for highly integrated, efficient, and intelligent powertrain architectures. In the current automotive landscape, EV powertrain systems are often composed of discrete ECUs such as the OBC, MCU, DC-DC Converter, PDU, and VCU, each operating in isolation. This fragmented approach adds wiring harness complexity, control latency, system inefficiency, and inflates costs making it harder for OEMs to scale operations, lower expenses, and accelerate time-to-market. The technical gap lies in the absence of a centralized intelligence capable of seamlessly managing and synchronizing the five key powertrain aggregates: OBC, MCU, DC-DC, PDU, and VCU under a unified software and hardware platform. This fragmentation leads to redundancy in computation, increased BOM cost, and challenges in system diagnostics, leading to sub-optimal vehicle performance. This paper addresses the core issue of fragmented control architectures in EV
Kumar, MayankDeosarkar, PankajInamdar, SumerTayade, Nikhil
In the current automotive design and development of the Electrical Distribution System (EDS), at an earlier stage, before the physical prototyping is largely absent. Traditional methods for verification and validation of EDS are performed with HIL, SIL, MIL, prototype testing or physical vehicle trials reveal design errors at later stages in the development cycle, which may lead to redesign, prolonged timelines and increased failure rates at vehicle integration. Hence, there is a critical need for an early-stage simulation methodology that ensures robustness and reliability of E/E architecture with first-time-right readiness at the design stage itself. In this paper, a digital EDS architecture simulation introduces a mode-based structural behavioural approach where specific vehicle functions, failure conditions and malfunction scenarios are set up in a simulation environment with their corresponding electrical circuits for simulation. A function-specific truth table-based analysis
Jaisankar, GokulnathWarke, UmakantChakra, PipunBorole, Akash
The integration of Advanced Driver Assistance Systems (ADAS) into modern vehicles necessitates innovative solutions for interior packaging that balance out safety, performance, and ergonomic considerations. This paper introduces an inverted U-shaped steel tube cross car beam (CCB) as a superior alternative to traditional straight tube designs, tailored for premium vehicle instrument panels. The U-shaped geometry overcomes the limitations of straight tube beams by creating additional packaging space for components such as AR-HUDs, steering columns, HVAC systems, and electronic control units (ECUs). This geometry supports efficient crunch packaging while accommodating ergonomic requirements like H-point, eyeball trajectory, and cockpit depth for optimal ADAS component placement. The vertical alignment of the steering column within the U-shaped design further enhances space utilization and structural integrity. This study demonstrates that the inverted U-shaped CCB is a transformative
Mahajan, Ajay SenuRegatte, GaneshNagarjuna, KamisettiSahoo, SandeepUdugu, KumaraswamyJC, Sudheera
This article describes an enhanced, more efficient way to build and test wire harnesses. The wire harness is a complex, organized bundle of wire found in virtually every motorized vehicle, machinery and equipment. Manual work is usually performed in assembling such harnesses, which is time-consuming and error-prone. Workers usually rely on printed diagrams and basic tools, which can be tiring and tricky to follow, especially when the designs change often. The new system solves many of these issues by combining a smart testing machine called Quad 64 with a large digital display workbench. Instead of looking at paper drawings, workers can now see the full wire layout directly on a screen, life-sized and clear. This makes it easier to understand where each wire goes and what to do next. What’s really helpful is that the system can spot mistakes right away. If a connector is omitted or a wire is placed wrongly, the system will report the error immediately and show it and the remedy. It
Sancheti, Rahul Madanlal
The integration of hydrogen (H2) as a fuel source in internal combustion engines (ICE) necessitates stringent design measures to mitigate leakage risks and ensure operational safety. This study focuses on the design optimization of vanity cover for hydrogen engines. Computational fluid dynamics (CFD) analysis is carried out to assess and control hydrogen leakage through fuel rail connections, injector interfaces and associated high pressure fuel system components. Detailed modelling of hydrogen flow behavior, diffusion characteristics of leaked hydrogen are simulated for worst case scenarios. Design iterations targeted improvement in ventilation pathways, strategic placement of vent holes, and internal flow management to minimize localized hydrogen buildup. The final design achieved hydrogen concentration, which was less than 4% satisfying the Product safety Hazard Analysis (PSHA) threshold for hydrogen engines. This paper validates the critical role of CFD driven design methodology in
Veerbhadra, Swati AshvinkumarSahu, Abhay KumarSingh, Rahul
The modern vehicle electrical architecture consists, on average, of 30 integrated electronic modules (ABS, infotainment, instrument panel, etc.), also known as Electronic Control Units (ECUs), and approximately 300 peripherals such as sensors (collision, temperature, oxygen, position, pressure, etc.) and actuators (window motor, mirror motor, relays, airbag inflator, windshield wiper, etc.). This increase in component integration imposes significant challenges to system installation and design. The interconnection of multiple devices renders harness design an arduous and time-consuming task, especially when conducted manually, resulting in error-prone and suboptimal outcomes. Such a scenario highlights the pressing need for studies on harness routing optimization in the automotive industry. Historically, wiring harness design practices have transitioned from manual approaches to the adoption of advanced computational tools. This methodological transition encompasses the use of various
Ribeiro, ThiagoReis, BrenoBarreto, ZeusGaleno, AntônioPereira, MarceloFerreira, Fláavio Fabrício V. M.
The fuses identification in power distribution boxes, which demands gathering and synthesizing information from diverse sources, represents a significant time consumption for engineers. Furthermore, the inherently repetitive nature of this manual task renders it susceptible to inaccuracies. To address this limitation, this paper examines the application of Large Language Models (LLMs) in the form of chat-bots for analyzing and optimizing vehicular Electrical Distribution Systems (EDS). The research investigates the capabilities of such a system to process complex EDS data, using Vehicle Manual Owner as a study case, with the goal of identifying optimization opportunities and improving project efficiency. The results of the application of Retriever Augmented Generation (RAG) enhanced the model’s ability to handle domain-specific data and function as a specialist assistant for Power Distribution Boxes. Experiments suggest this automated approach can generate valuable insights, such as
Araújo, PriscilaOlympio, ThomasSoares, RonaldoBarros, Maria IsabelSilva, JanyssonFerreira, Flávio Fabrício V. M.Murari, Thiago B.
This AIR is limited to the testing of an extra-high strength copper alloy and benchmark conductors utilizing the test protocol of AS6324. All samples are 19 strand unilay conductors per AS29606 at 24 or 26 AWG, either nickel or silver coated. At 24 AWG, extra-high strength copper alloy is compared to high strength copper alloy conductors. At 26 AWG, extra-high strength copper alloy is compared to high strength copper alloy and ultrahigh strength copper alloy conductors.
AE-8D Wire and Cable Committee
Modern vehicle integration has become exponentially more difficult due to the complicated structure of designing wiring harnesses for multiple variants that have diverse design iterations and requirements. This paper proposes an AI-driven solution for addressing variant complexity. By using Convolutional Networks and Deep Neural Networks (CNN & DNN) to generate harness routing using defined specifications and constraints, the proposed solution uses minimal human intervention, substantially less time, and enables less complexity in designing. AI trained modelled systems can generally even predict failures in production methods which also reduces downtime and increases productivity. The new AI system automatically converts design specifications to manufacturable design specifications to avoid confusion with design parameters, by optimizing concepts with connector placements, grommet fittings, clip alignments, and other tasks. The solution coping with the inherent dynamic complexity of
N, Rishi KumaarPatil R, BharathRajavelu, VivekRamachandran, VigneshMohanty, LalitPadmarajan, Vishnu
The intent of the SAE Aerospace Recommended Practice (ARP) is to provide a process for users to identify the part number of AS7928 terminal lugs installed in civilian or military applications, although it can also be used to identify terminals that have been stored incorrectly. This ARP is subject to change to keep pace with experience and technical advances of AS7928 terminals. A current set of tables are provided to list and identify current AS7928 terminal lug configurations per the associated specification detail sheet and terminal lug configuration. Specific configuration details, graphic, size, and marking information for each individual terminal lug is provided to assist the product user with accurate selection for replacement or identification.
AE-8C2 Terminating Devices and Tooling Committee
This specification establishes the performance requirements for the identification of wire and cable by indirect markings that have been applied to electrical insulating materials including heat shrink sleeving, wrap around labels and “tie-on” tags as well as any other types of materials used for indirect marking. This specification covers the processes used to mark these materials, including impact ink marking, thermal transfer, hot stamp, and lasers, etc. This specification does not cover the direct marking on insulated electrical wires and cables.
AE-8A Elec Wiring and Fiber Optic Interconnect Sys Install
This SAE Aerospace Information Report (AIR) defines the areas where incompatibility may exist between the selected wire and the electrical connector in which it is terminated and how to design for compatibility. Refer to ARP914 for a glossary of connection terms.
AE-8C1 Connectors Committee
This SAE Aerospace Information Report (AIR) is limited to the subject of compatibility of wiring as part of aircraft Electrical Wiring and Interconnect Systems (EWIS) installed in and around aircraft fuel tanks.
AE-8A Elec Wiring and Fiber Optic Interconnect Sys Install
This SAE Standard establishes the minimum construction and performance requirements for a 15 pole connector between towing vehicles and trailers, for trucks, trailers, and dollies, for 12 VDC nominal applications in conjunction with SAE J2742. The connector accommodates both power and ISO 11992-1 signal circuits along with dual ground wires to accommodate grounding requirements within the constraints of the SAE J2691 terminal capacity.
Truck and Bus Electrical Systems Committee
This SAE Standard establishes the minimum construction and performance requirements for seven conductor 1/8-1/10-5/12 cable for use on trucks, trailers and converter dollies for 12 VDC nominal applications. Where appropriate, the standard refers to two types of cables (Type F and S, described later in the standard), due to the variation in the performance demands of cables used in flexing and stationary applications.
Truck and Bus Electrical Systems Committee
This SAE Standard encompasses connectors between two cables or between a cable and an electrical component and focuses on the connectors external to the electrical component. This document provides environmental test requirements and acceptance criteria for the application of connectors for direct current electrical systems of 60 V or less in the majority of heavy-duty applications typically used in off-highway machinery. Severe applications can require higher test levels or field-testing on the intended application.
CTTC C2, Electrical Components and Systems
For years the NVH community has known that openings in the dash sheet metal, such as holes to pass wire harnesses through, creates an acoustical weak point that limits the potential noise reduction of the dash insulation system. These pass-throughs can also be a source of water leaks into the vehicle’s interior. With internal combustion engines and now electric inverter power plants generating significant high frequency sound, the need to seal this area is vital. By molding a lightweight barrier that draws through the fiber/absorber interior decoupler and dash sheet metal which mates to a secondary seal molded into an outer engine dash decoupler, the two opposing molded barriers meet in the engine compartment and compress together forming a seal around the wire harness. This male/female molded seal replaces the conventional snap in grommet and eliminates noise/water leaks. The system Sound Transmission Loss (STL) is equivalent to similarly insulated sheet metal with no holes
Check, JamesMoritz, Charles
This paper presents a comparative analysis of various short-time current rating formulas, focusing on applications in aircraft wiring. Examining historical formulas developed by pioneers such as W.H. Preece and I.M. Onderdonk alongside modern experimental data provide a comprehensive understanding of short-time current rating formulas. Also, exploring key challenges, such as environmental conditions and material variability in aviation with particular attention to adiabatic methods for current-carrying calculations. The findings of this paper offer practical insights into improving the safety and reliability of an aircraft electrical system with improving the accuracy of short-time current rating predictions.
Fifield, Jon
This standard is applicable to the marking of aerospace vehicle electrical wires and cables using ultraviolet (UV) lasers. This standard specifies the process requirements for the implementation of UV laser marking of aerospace electrical wire and cable and fiber-optic cable to achieve an acceptable quality mark using equipment designed for UV laser marking of identification codes on aerospace wire and cable. Wiring specified as UV laser markable subject to AS4373 and which has been marked in accordance with this standard will conform to the requirements of AS50881.
AE-8A Elec Wiring and Fiber Optic Interconnect Sys Install
The purpose of this ARP is to provide information on splices, and the definition of the preferred methods of splicing single core wires and multi-conductor cables supplied on reels by vendors, to facilitate their processing on automated wire processing systems to allow continued uninterrupted machine operation without requiring operator intervention.
AE-8D Wire and Cable Committee
This paper describes a novel invention which is an Intrusion Detection System based on fingerprints of the CAN bus analogue features. Clusters of CAN message analogue signatures can be associated with each ECU on the network. During a learning mode of operation, fingerprints can be learnt with the prior knowledge of which CAN identifier should be transmitted by each ECU. During normal operation, if the fingerprint of analogue features of a particular CAN identifier does not match the one that was learnt then there is a strong possibility that this particular CAN identifier’s message is symptomatic of a problem. It could be that the message has been sent by either an intruder ECU or an existing ECU has been hacked to send the message. In this case an intruder can be defined as a device that has been added to the CAN bus OR a device that has been hacked/manipulated to send CAN messages that it was not designed to (i.e. could be originally transmitted by another device). It could also be
Quigley, ChristopherCharles, David
The scope of this report is to capture fundamental principles of selecting a wire size for an aerospace application using the method prescribed in AS50881 and additional calculations, not found in AS50881, to ensure the wire selection will adequately perform in the specific physical and environmental conditions. This report covers wire selection and sizing as part of the electrical wire interconnection systems (EWIS) used in aerospace vehicles. Aerospace vehicles include manned and unmanned airplanes, helicopters, lighter-than-air vehicles, missiles, and external pods. This document does not apply to wiring inside of airborne electronic equipment but shall apply to wiring externally attached to such equipment. Wire selection must consider physical and environmental factors to size wires such that they have sufficient mechanical strength, do not exceed allowable voltage drop levels, are protected by materials or circuit protection devices, and meet circuit current carrying requirements
AE-7C Systems
The Battery Management System (BMS) plays a vital role in managing the energy present in the high voltage battery pack of electric vehicles. The wired battery management system is commonly used in automotive applications. The known difficulties with the wired battery management system includes the intricate wiring harness, wiring failures, system scalability and high implementation costs. To mitigate the above challenges, the wireless battery management system is proposed. Several wireless protocols, including BLE, Zigbee, and 2.4GHz proprietary protocol, are being examined for wireless BMS. However, there are technical difficulties with these protocols to be applied in the battery pack environment. This research paper looks at the Ultra-Wide Band (UWB) communication protocol for wireless BMS, considering UWB’s efficiency low latency and robust Radio Frequency (RF) performance. The UWB protocol is used to communicate between the Cell Supervisory Circuit (CSC) and the Battery Management
Dannana, Arun KumarSubbiah Subbulakshmi, NallaperumalChandirasekaran, RamachandranBeemarajan, Mutharasu
This specification covers polyvinyl chloride insulated single conductor electric wires made with tin-coated copper conductors or silver-coated copper alloy conductors. The polyvinyl chloride insulation of these wires may be used alone or in combination with other insulating or protective materials.
AE-8D Wire and Cable Committee
AE-8A Elec Wiring and Fiber Optic Interconnect Sys Install
This ARP specifies the recommended methods of marking electrical wiring and harnesses to aid in the positioning/routing of electrical wiring, harnesses and cable assemblies.
AE-8A Elec Wiring and Fiber Optic Interconnect Sys Install
This document defines cables that are used to provide electrical power for U.S. Department of Defense avionics support and test equipment.
AGE-3 Aircraft Ground Support Equipment Committee
This specification covers design requirements, performance requirements, and methods of procurement for tools and associated accessories used to strip aerospace vehicle electrical wire and cable. Aerospace vehicle electrical wire has stranded conductors with protective plating and specialized insulation. Poor quality wire strippers or mismatched blades can compromise the performance of wiring.
AE-8C2 Terminating Devices and Tooling Committee
This SAE Standard specifies requirements and design guidelines for electrical wiring systems of less than 50 V and cable diameters from 0.35 to 19 mm2 used on off-road, self-propelled earthmoving machines as defined in SAE J1116 and agricultural tractors as defined in ASAE S390.
CTTC C2, Electrical Components and Systems
This SAE Aerospace Recommended Practice (ARP) provides recommended use and installation procedures for bonded cable harness supports.
AE-8A Elec Wiring and Fiber Optic Interconnect Sys Install
AS22759 specification covers fluoropolymer-insulated single conductor electrical wires made with tin-coated, silver-coated, or nickel-coated conductors of copper or copper alloy as specified in the applicable detail specification. The fluoropolymer insulation may be polytetrafluoroethylene (PTFE), fluorinated ethylene propylene (FEP), polyvinylidene fluoride (PVF2), ethylene-tetrafluoroethylene copolymer (ETFE), or other Fluoropolymer resin. The fluoropolymer may be used alone or in combination with other insulation materials. These abbreviations shall be used herein. When a wire is referenced herein, it means an insulated conductor (see 7.7).
AE-8D Wire and Cable Committee
The automotive PowerNet is in the middle of a major transformation. The main drivers are steadily increasing power demand, availability requirements, and complexity and cost. These factors result in a wide variety of possible future PowerNet topologies. The increasing power demand is, among other factors, caused by the progressive electrification of formerly mechanical components and a constantly increasing number of comfort and safety loads. This leads to a steady increase in installed electrical power. X-by-wire systems1 and autonomous driving functions result in higher availability requirements. As a result, the power supply of all safety-critical loads must always be kept sufficiently stable. To reduce costs and increase reliability, the car manufacturers aim to reduce the complexity of the PowerNet system, including the wiring harness and the controller network. The wiring harness e.g., is currently one of the most expensive parts of modern cars. These challenges are met with a
Jagfeld, Sebastian Michael PeterWeldle, RichardKnorr, RainerFill, AlexanderBirke, Kai Peter
MIT researchers have developed a battery-free, self-powered sensor that can harvest energy from its environment. Because it requires no battery that must be recharged or replaced, and because it requires no special wiring, such a sensor could be embedded in a hard-to-reach place, like inside the inner workings of a ship’s engine. There, it could automatically gather data on the machine’s power consumption and operations for long periods of time.
Items per page:
1 – 50 of 1682