Browse Topic: Energy storage systems

Items (5,572)
Electric double-layer capacitors (EDLCs) store charge by adsorbing ions at the electrode-electrolyte interface, offering fast charge/discharge rates, high power density, minimal heat generation, and long cycle life. These characteristics make EDLCs ideal for memory backup in electronic devices and power assistance in electric and hybrid vehicles. However, their energy density is lower than that of batteries, necessitating improvements in electrical capacity and potential. Traditionally, activated carbon with a high specific surface area has been used, but recent research focuses on mesoporous carbon materials for better ion diffusion. This study uses resorcinol-formaldehyde-carbon cryogel (RFCC) with mesopores and organic electrolytes with a wider electrochemical window. Various RFCCs with different pore sizes were synthesized and evaluated. Comprehensive investigations into the pore structures and surface properties of both synthesized carbon gels and commercial mesoporous materials
Cheng, ZairanOkamura, TsubasaOhnishi, YutoNakagawa, Kiyoharu
The rise of electric vehicles (EVs) highlights the need to transition to a renewable energy society, where power is generated from sustainable sources. This shift is driven by environmental, economic, and energy security concerns. However, renewable energy sources like wind and solar are intermittent, necessitating extensive energy storage systems. Vanadium redox flow batteries (VRFBs) are promising for large-scale energy storage due to their long cycle life, scalability, and safety. In VRFBs, cells are typically connected in series to increase voltage, with electrolytes introduced through parallel flow channels using a single manifold. This design, while simple and low in pressure drop, often leads to imbalanced flow rates among cells, affecting performance. Balancing flow rates is crucial to minimize uneven overpotential and enhance durability, presenting an optimization challenge between achieving uniform flow and minimizing pressure drop. This study developed numerical models to
Suwanpakdee, NutAiemsathit, PorametCharoen-amornkitt, PatcharawatSuzuki, TakahiroTsushima, Shohji
The growing demand for sustainable transportation solutions and renewable energy storage systems has heightened the necessity for precise and effective prediction of battery thermal performance. However, achieving both precision and efficiency poses a challenge, necessitating exploration into diverse methodologies. The conventional use of Computational Fluid Dynamics (CFD) offers a comprehensive insight into thermal dynamics but prioritizes precision over efficiency. To enhance the efficiency of this traditional approach, numerous reduced-order modeling techniques have emerged, and the concept of Machine Learning (ML) presents a distinct avenue for enhancing simulation capabilities, particularly in the context of mobility solutions. This paper presents a novel approach to accelerate battery thermal analysis by integrating CFD and ML. The CFD simulations provide an intricate understanding of the thermal dynamics within batteries, encompassing fluid flow and temperature distributions
Devarajan, GurudevanVaidyanathan, GaneshBhave, AjinkyaJi, LichaoWang, JiaoZhou, WeiHe, JiguangShi, Pengfei
As the automotive sector shifts towards cleaner and more sustainable technologies, fuel cells and batteries have emerged as promising technologies with revolutionary potential. Hydrogen fuel cell vehicles offer faster refueling times, extended driving ranges, and reduced weight and space requirements compared to battery electric vehicles, making them highly appealing for future transportation applications. Despite these advantages, optimizing electrode structures and balancing various transport mechanisms are crucial for improving PEFCs’ performance for widespread commercial viability. Previous research has utilized topology optimization (TO) to identify optimal electrode structures and attempted to establish a connection between entropy generation and topographically optimized structures, aiming to strengthen TO numerical findings with a robust theoretical basis. However, existing studies have often neglected the coupling of transport phenomena. Typically, it is assumed that a single
Tep, Rotanak Visal SokLong, MenglyAlizadeh, MehrzadCharoen-amornkitt, PatcharawatSuzuki, TakahiroTsushima, Shohji
In recent years, climate change and geopolitical instability have intensified the focus on sustainable power generation. This shift seeks alternatives that balance environmental impact, cost-effectiveness, and practicality. Specifically, in transportation and power generation, electric motors face challenges against internal combustion engines due to the high cost and mass of batteries required for energy storage. This makes electric solutions less favorable for these sectors. Conversely, internal combustion engines, when properly fueled, offer cost-effectiveness and a quasi-environmentally-neutral option. To address these challenges, researchers have explored e-fuels derived from renewable sources as a carbon-neutral supply for internal combustion engines. Among these, hydrogen is particularly promising. In hydrogen-powered internal combustion engines, 3D-CFD (Computational Fluid Dynamics) in-cylinder models are crucial. Once validated, these models can speed up the design process. A
Sfriso, StefanoBerni, FabioBreda, SebastianoFontanesi, StefanoCordisco, IlarioLeite, Caio RamalhoBrequigny, PierreFoucher, Fabrice
To address the pressing issue of electrical fluctuations from renewable energy technologies, an energy storage system (ESS) is proposed. The vanadium redox flow battery (VRFB) is gaining significant attention due to its extended lifespan, durability, thermal safety, and independent power capacity, despite its high cost. Key components of the VRFB include a membrane, carbon electrode, bipolar plate, gasket, current collector, electrolyte, and pump. Among these, the carbon electrode and bipolar plate are the most expensive. Reducing capital costs in VRFB systems is crucial for advancing clean energy solutions. Conventional flow field designs like interdigitated flow field (IFF), serpentine flow field (SFF), and parallel flow field (PFF) are used to feed the electrolyte into the VRFB cell, necessitating thicker bipolar plates to avoid cracking during the machining process. This study focuses on optimizing the flow-through (FT) design, which eliminates the need for machining on bipolar
Aiemsathit, PorametSun, PengfeiAlizadeh, MehrzadLaoonual, YossapongCharoen-amornkitt, PatcharawatSuzuki, TakahiroTsushima, Shohji
Most electric 2-wheelers on the market today seek to replace combustion engine vehicles from 50cc to 150cc which equates to an electric motor power between 2 and 12 kW. The traction voltage level of these vehicles is mostly between 44V and 96V. However, the actual choice of voltage on a specific vehicle seems to be arbitrary and higher voltage does not necessarily correlate with higher motor power. This paper seeks to highlight considerations and tradeoffs which feed the choice of traction voltage levels. Important criteria are electrical safety standards and their impact on vehicle electrical architecture, the performance and availability of key electronics parts such as capacitors, MOSFETs, and gate drivers, while also highlighting functional safety aspects. This paper shows by a comprehensive analysis of the motor drive that for the vehicle class mentioned above the traction voltage level can be kept below 60V without any performance impact, while also ensuring electrical and
Schmitt, Stefan
The danger of lithium-ion batteries in electric vehicles (EVs) is intensified when they are used at inappropriate temperatures, leading to self-heating and eventually contributing to thermal runaway. Nevertheless, there is uncertainty through the safety of reusing batteries after they have been exposed to heat damage and water mist from fire extinguishers. To address these concerns, this study aimed to experimentally investigate the impact of temperature on batteries and introduce a thermal management using a water mist. Subjecting a battery to a temperature of 100°C for a duration of 39 minutes can immediately detect inoperability from a sudden drop in voltage. The use of water mist was proposed to rapidly mitigate the heat production inside the battery. The state of health (SOH) and the impedance were employed to confirm the battery’s functionality after exposure to thermal abuse and water spraying. The SOH of fresh cells was measured as a reference line for comparison to tested
Trinuruk, PiyatidaPatthathum, PathompornJumnongjit, Apiwit
A great number of performances of an electric vehicle such as driving range, powering performance, and the like are affected by its configured batteries. Having a good grasp of the electrical and thermal behavior of the battery before the detailed design stage is indispensable. This paper introduces an experiment characterization method of a lithium-ion battery with a coolant system from cell level to pack level in different ambient conditions. Corresponding cell and pack simulation models established in AMESim that aimed to capture the electrical and thermal features of the battery were also illustrated, respectively. First, the capacity test and hybrid pulse power characterization (HPPC) test were conducted in a thermotank to acquire basic data about the battery cell. Next, based on acquired data, first-order equivalent circuit model (1C-ECM) was built for the battery cell and further combined with environmental boundary conditions to check the simulation accuracy. Then, hybrid
Zhou, ShuaiLiu, HuaijuYu, HuiliYan, XuYan, Junjie
The New Car Assessment Program (e.g., US NCAP and EuroNCAP) frontal crash tests are an essential part of vehicle safety evaluations, which are mandatory for the certification of civil means of transport prior to normal road exploitation. The presented research is focused on the behavior of a tubular low-entry bus frame during a frontal impact test at speeds of 32 and 56 km/h, perpendicular to a rigid wall surface. The deformation zones in the bus front and roof parts were estimated using Ansys LS-DYNA and considered such factors as the additional mass (1630 kg) of electric batteries following the replacement of a diesel engine with an electric one. This caused stabilization of the electric bus body along the transverse axis, with deviations decreased by 19.9%. Speed drop from 56 to 32 km/h showed a reduction of the front window sill deformations from 172 to 132 mm, and provided a twofold margin (159.4 m/s2) according to the 30g ThAC criterion of R80. This leads to the conclusion about
Holenko, KostyantynDykha, AleksandrKoda, EugeniuszKernytskyy, IvanRoyko, YuriyHorbay, OrestBerezovetska, OksanaRys, VasylHumeniuk, RuslanBerezovetskyi, SerhiiChalecki, Marek
With the global issue of fossil fuel scarcity and the greenhouse effect, interest in electric vehicles (EVs) has surged recently. At that stage, because of the constraints of the energy density and battery performance degradation in low-temperature conditions, the mileage of EVs has been criticized. To guarantee battery performance, a battery thermal management system (BTMS) is applied to ensure battery operates in a suitable temperature range. Currently, in the industry, a settled temperature interval is set as criteria of positive thermal management activation, which is robust but leads to energy waste. BTMS has a kilowatt-level power usage under high- and low-temperature environments. Optimizing the BTMS control strategy becomes a potential solution to reduce energy consumption and overcome mileage issues. An appropriate system simulation model provides an effective tool to evaluate different BTMS control strategies. In this study, a predictive BTMS control strategy, which adjusts
Huang, ZhipeiChen, JiangboTang, Hai
Increasing global pressure to reduce anthropogenic carbon emissions has inspired a transition from conventional petroleum-fueled internal combustion engines to alternative powertrains, including battery electric vehicles (EVs) and hybrids. Hybrids offer a promising solution for emissions reduction by addressing the limitations of pure EVs such as slow recharge and range anxiety. In a previous research endeavor, a prototype high-power density generator was meticulously designed, fabricated, and subjected to testing. This generator incorporated a compact permanent magnet brushless dynamo and a diminutive single-cylinder two-stroke engine with low-technology constructions. This prototype generated 8.5 kW of electrical power while maintaining a lightweight profile at 21 kg. This study investigates the performance and emissions reduction potential by adapting the prototype to operate on methanol fuel. Performance and emissions were experimentally evaluated under varying operating conditions
Gore, MattNonavinakere Vinod, KaushikFang, Tiegang
Fuel cell vehicles (FCVs) offer a promising solution for achieving environmentally friendly transportation and improving fuel economy. The energy management strategy (EMS), as a critical technology for FCVs, faces significant challenges of achieving a balanced coordination among the fuel economy, power battery life, and durability of fuel cell across diverse environments. To address these challenges, a learning-based EMS for fuel cell city buses considering power source degradation is proposed. First, a fuel cell degradation model and a power battery aging model from the literature are presented. Then, based on the deep Q-network (DQN), four factors are incorporated into the reward function, including comprehensive hydrogen consumption, fuel cell performance degradation, power battery life degradation, and battery state of charge deviation. The simulation results show that compared to the dynamic programming–based EMS (DP-EMS), the proposed EMS improves the fuel cell durability while
Song, DafengYan, JinxingZeng, XiaohuaZhang, Yunhe
Toyota Motor Corporation pursuing an omnidirectional strategy that includes battery electric vehicle (BEV), plug-in hybrid electric vehicle (PHEV), and fuel cell electric vehicle (FCEV) to accelerate electrification. One of the technical challenges with our xEV batteries which feature good degradation resistance and long battery life, is that regenerative braking cannot be fully effective due to the decrease in regenerative power in some situations, such as low battery temperature. For the electrified vehicles with an internal combustion engine such as PHEVs, the solution has been running the engine to increase deceleration through engine braking during coasting. PHEVs are expected to extend their cruising range and enhance EV driving experience as "Practical BEVs". While increasing battery capacity and enhancing convenience, the restrictions on EV driving opportunity due to low battery temperature may negatively affect PHEV’s appealing. As an alternative, introducing a battery heater
Hoshino, Yu
Electric vehicles (EVs) are gaining popularity due to their zero tailpipe emissions, superior energy efficiency, and sustainable nature. EVs have various limitations, and crucial one is the occurrence of thermal runaway in the battery pack. During charging or discharging condition of battery pack may result in thermal runaway condition. This promotes the requirement of effective cooling arrangement in and around the battery pack to avoid localized peak temperature. In the present work, thermal management of a 26650 Lithium iron phosphate (LFP) cell using natural convection air cooling, composite biobased phase change material (CBPCM) and its combination with copper fins is numerically investigated using multi-scale multi dimension - Newman, Tiedenann, Gu and Kim (MSMD-NTGK) battery model in Ansys Fluent at an ambient temperature of 306 K. Natural convection air cooling was found effective at discharge rates of 1C to 3C, maintaining cell temperature below the safe limit of 318 K for 80
Srivastav, DurgeshPatil, Nagesh DevidasShukla, Pravesh Chandra
Given the promising prospects of retired lithium-ion batteries in second-life utilization, enhancing their consistency through a rational sorting process has become a pressing priority. Traditional capacity-based sorting methods have significant limitations as it takes high time costs and fails to provide internal dynamic information about the batteries. To address this, the present study introduces a novel approach by incorporating electrochemical impedance spectroscopy (EIS) into the sorting process. Firstly, principal component analysis (PCA) analysis is applied to extract the first principal component from the EIS data, which has a strong correlation with battery capacity. It serves as a key feature for assessing the residual value of retired batteries. Accurate estimation of battery capacity is then achieved using a simple linear equation: For retired nickel-cobalt-manganese (NCM) batteries, the mean absolute percentage error (MAPE) and root mean squared percentage error (RMSPE
Fan, WenjunWang, XueyuanJin, YiqunJiang, BoZhu, JiangongWei, XuezheDai, Haifeng
Electric vehicles (EVs) have experienced significant growth, and the battery safety of EVs has drawn increased attention. However, the mechanical responses of battery during crashes have rarely been studied. Hence, the objective of this study was to understand EV battery package mechanics during side-pole crashes at different impact locations and speeds beyond regulated side-pole test with one specific speed and one location. An EV finite element (FE) model with a battery package was used. Side-pole impact simulations were conducted at four impact locations, including the baseline impact location according to side-pole impact regulation, plus three positions by moving the rigid pole 400 mm toward the back of the EV and moving the pole 400 and 800 mm toward the front of the EV. In addition, the impact velocities at 32, 50, and 80 km/h were simulated. Based on simulations, the peak relative displacement, the maximum change in gap between batteries, the maximum change in gap between the
Chen, JianBian, KeweiMao, Haojie
Interest in Battery-Driven Electric Vehicles (EVs) has significantly grown in recent years due to the decline of traditional Internal Combustion Engines (ICEs). However, malfunctions in Lithium-Ion Batteries (LIBs) can lead to catastrophic results such as Thermal Runaway (TR), posing serious safety concerns due to their high energy release and the emission of flammable gases. Understanding this phenomenon is essential for reducing risks and mitigating its effects. In this study, a digital twin of an Accelerated Rate Calorimeter (ARC) under a Heat-Wait-and-Seek (HWS) procedure is developed using a Computational Fluid Dynamics (CFD) framework. The CFD model simulates the heating of the cell during the HWS procedure, pressure build-up within the LIB, gas venting phenomena, and the exothermic processes within the LIB due to the degradation of internal components. The model is validated against experimental results for an NCA 18650 LIB under similar conditions, focusing on LIB temperature
Gil, AntonioMonsalve-Serrano, JavierMarco-Gimeno, JavierGuaraco-Figueira, Carlos
In addition to electric vehicles (EVs), hydrogen fuel cell systems are gaining attention as energy-efficient propulsion options. However, designing fuel cell vehicles presents unique challenges, particularly in terms of storage systems for heavy hydrogen tanks. These challenges impact factors such as NVH (noise, vibration, and harshness) and safety performance. This study presents a topology optimization study for Hydrogen Energy Storage System (HESS) tank structure in Class 5 trucks, with a focus on enhancing the modal frequencies. The study considers a specific truck configuration with a HESS structure located behind the crew cab, consisting of two horizontally stacked hydrogen tanks and two tanks attached on both sides of the frame. The optimization process aimed to meet the modal targets of this hydrogen tank structure in the fore-aft (X) and lateral (Y) directions, while considering other load cases such as a simplified representation of GST (global static torsion), simplified
Yoo, Dong YeonChavare, SudeepViswanathan, SankarMouyianis, Adam
In recent years, energy scarcity and environmental pollution have intensified globally, prompting increased research and development in new energy vehicles as countries prioritize environmental protection and energy conservation. Compared to fuel-powered vehicles, new energy vehicles have relatively larger battery volumes and weights, which can increase damage and the risk of fires and explosions in collisions. To analyze and optimize the safety performance of a specific vehicle model's battery pack, we constructed a finite element model using existing software and performed pre-processing, simulation, and analysis of modal, random vibration, and extrusion characteristics. This revealed specific damage scenarios and enabled reliability analysis under working conditions. To enhance safety and reduce mass, we parametrically modeled power pack components and optimized parameters via multi-objective genetic algorithms under three road conditions. Results indicate reduced mass and improved
Wang, Zhi
Fuel cell electric vehicles (FCEVs) are gaining increasing interest due to contributions to zero emissions and carbon neutrality. Thermal management of FCEVs is essential for fuel cell lifespan and vehicle driving performance, but there is a lack of specialized thermal balance test standards for FCEVs. Considering differences in heat generating mechanism between FCEVs and internal combustion engine vehicles (ICEVs), current thermal balance method for ICEVs should be amended to suit for FCHVs. This study discussed thermal balance performance of ICEV and FCHVs under various regulated test conditions based on thermal balance tests in wind tunnel of two FCEVs and an ICEV. FCEVs reported overheat risk during low-speed climbing test due to continuous large power output from fuel cell (FC). Frequent power source switches between FC and battery were observed under dual constrains of fuel cell temperature and battery state of charge (SOC). Significant temperature exceedance of ICEV occurred
Fang, YanhuaMin, YihangMing, ChenLi, HongtaoLi, DongshengHe, ChongMao, Zhifei
Electrified vehicles rely on batteries to store energy for propulsion. Batteries depend on chemistry that changes over time and with use. This aging has many effects. Historically, efforts to predict and be robust to battery aging have focused on capacity loss and power loss/resistance growth. While a battery’s state of charge-open circuit voltage (SOC-OCV) relationship is typically treated as static, data illustrates that it shifts with battery age. We are not aware of any published methods to account for this effect for on-board modeling or controls. Regulations by the European Union, the Environmental Protection Agency, and the California Air Resource Board have proposed a state of certified energy (SOCE) to provide vehicle owners with a common metric reflecting the vehicle battery age. This metric captures the capacity and power loss of an aged battery. However, SOC-OCV changes with age may make accurately estimating SOCE more challenging. The upcoming regulations require accurate
Vuylsteke, GabrielleWu, HaoMoore, WilliamWashington, Donnell
As the high-quality development of the new energy vehicle (NEV) and traction battery industries, the safety of traction batteries has become a global focus. Typically mounted at the bottom of NEVs, traction battery systems are particularly vulnerable to mechanical damage caused by bottom impacts, posing serious safety risks. This study investigates the damage sustained by NEV traction battery systems during bottom impact collisions, using computer tomography analysis to detail the damage mechanisms. The findings provide valuable data to enhance the safety and protective performance of traction batteries under such scenarios.
Yan, PengfeiWang, FangMa, TianyiHan, CeHe, Gaiyun
Accurate battery capacity estimation is critical for ensuring the safe and reliable operation of electric vehicles (EVs) and addressing user range anxiety. However, predicting battery health is challenging due to the non-linearity, non-measurability, and complex multi-stress operating conditions that characterize battery performance. Incremental capacity curves and electrochemical impedance spectroscopy (EIS) are effective tools for reflecting battery aging, but their practical application has limitations. This paper presents a novel method for battery capacity estimation using charging segment data derived from real-world operating conditions monitored by the vehicle's Battery Management System (BMS). The proposed approach begins with a detailed statistical analysis of voltage data to determine optimal charging capacity intervals and involves selecting appropriate voltage ranges to compute equivalent full-charge capacities. Experimental tests are performed to measure battery charging
Tao, SiyiZhu, JiangongLi, YuanChang, WeiDai, HaifengWei, Xuezhe
In this study, we examine the thermal behaviours of lithium-ion battery cells using two widely employed electro-chemistry models: the Equivalent Circuit Model (ECM) and the Newman-Tiedemann-Gauthier-Kim (NTGK) model. Given the critical importance of temperature regulation for the efficiency and lifespan of lithium-ion batteries, this research aims to identify the numerical method that best predicts cell thermal behaviour under constant discharge conditions with 2C, 1C and 0.5C rate. By comparing the outputs of the ECM and NTGK models, we assess their accuracy in predicting key parameters such as State-of-Charge (SoC), current output, voltage, temperature and heat generation. The findings offer valuable insights into the effectiveness of each model in simulating the thermal dynamics of battery cells, providing a basis for optimizing battery performance and longevity in real-world applications.
Wakale, AnilMa, ShihuHu, Xiao
In the automotive industry, it is essential to consider not only how well specialty materials perform and are formulated, but also how efficiently and economically they can be applied during manufacturing. This becomes especially important during the early stages of development to prevent issues when these materials are used in new designs by automotive suppliers or manufacturers. With the rapid growth of electric vehicles (EVs), new materials are being used more frequently, and these materials may not have been as thoroughly tested as those used in traditional internal combustion engine (ICE) vehicles. Therefore, it is crucial to ensure that these materials can be applied correctly and efficiently from the start. One way to speed up the development process is through Computational Fluid Dynamics (CFD) modeling. CFD helps predict how materials will behave when dispensed, which is essential for developing the right equipment and conditions for applying these materials. Working with
Kenney, J. AndyDelgado, RobertoHossain, ArifNg, Sze-SzeThomas, RyanChyasnavichyus, MariusTsang, Chi-WeiHwang, MargaretWu, LanceDietsche, LauraMcmichael, JonathanRaines, KevinNelson, Grant
Efficient and robust optimization frameworks are essential to develop and parametrize battery management system (BMS) controls algorithms. In such multi-physics application, the tradeoff between fast-charging performance and aging degradation needs to be solved while simultaneously preventing the onset of thermal runaway. To this end, a multi-objective optimization framework was developed for immersion-cooled battery systems that provides optimal charging rates and dielectric flowrates while minimizing aging and charging time objectives. The developed production-oriented framework consists of a fully coupled, lumped electro-thermal-aging model for cylindrical cells with core-to-surface and immersion-cooling heat transfer, the latter controlled by the dielectric fluid flowrate. The modeled core temperatures are inputs to a semi-empirical aging degradation model, in which a fast-aging solver computes the updated capacity and internal resistance over multiple timescales, which in turn
Suzuki, JorgeTran, Manh-KienTyagi, RamavtarMeshginqalam, AtaZhou, ZijieNakhla, DavidAtluri, Prasad
With the increasingly prominent environmental problems and energy crisis, wind power, solar power and other new energy has been rapid development, and energy storage technology is of great significance to the development of new energy. Compared with the power batteries applied in electric vehicles, battery energy storage systems gather a larger number of batteries and a larger scale, usually up to megawatts or 100 megawatts. During the operation of the energy storage system, the lithium-ion battery continues to charge and discharge, and its internal electrochemical reaction will inevitably generate a lot of heat. If the heat is not dispersed in time, the temperature of the lithium-ion battery will continue to rise, which will seriously affect the service life and performance of the battery, and even cause thermal runaway leading to explosion. It is of great significance for promoting the development of new energy technologies to carry out research on the thermal model of lithium-ion
Chen, JianxiangLi, LipingZhou, FupengLi, ChunchengShangguan, Wen-Bin
As the main power source for modern portable electronic devices and electric vehicles, lithium-ion batteries (LIBs) are favored for their high energy density and good cycling performance. However, as the usage time increases, battery performance gradually deteriorates, leading to a heightened risk of thermal runaway (TR) increases, which poses a significant threat to safety. Performance degradation is mainly manifested as capacity decline, internal resistance increase and cycle life reduction, which is usually caused by internal factors of LIBs, such as the fatigue of electrode materials, electrolyte decomposition and interfacial chemical reaction. Meanwhile, external factors of LIBs also contribute to performance degradation, such as external mechanical stresses leading to internal structural damage of LIBs, triggering internal short-circuit (ISC) and violent electrochemical reactions. In this paper, the performance degradation of LIBs and TR mechanism is described in detail, as well
Zhou, JingtaoZhong, XiongwuWang, KunjunZhou, YouhangYou, GuojianTang, Xuan
aThe lengthy charging time of lithium-ion batteries for electric vehicles (EVs) significantly affect their acceptance. Reducing charging time requires high-power fast charging. However, such fast charging can trigger various side reactions, leading to safety and durability issues. Among these, lithium plating is a major concern as it can reduce battery capacity and potentially cause internal short circuits or even thermal runaway. Currently, multi-stage constant current charging (MCCC) protocols are widely adopted. However, the difficulty in effectively detecting lithium plating during the MCCC process significantly limits the charging power. Therefore, it is urgent to explore a method to detect lithium plating during the MCCC process. In this study, the impedance evolution during the MCCC procedure was first investigated. Then a method based on the impedance variation patterns was proposed to detect lithium plating. Besides, the reason for the behavior of impedance changes was further
Shen, YudongWang, XueyuanWu, HangWei, XuezheDai, Haifeng
Battery safety is a paramount concern in the development of electric vehicles (EVs), as failures can lead to catastrophic consequences, including fires and explosions. With the rapid global adoption of EVs, understanding how battery cells perform under extreme conditions such as mechanical or thermal abuse is crucial for ensuring vehicle safety. This study investigates the abuse response of lithium-ion batteries under high-speed mechanical loading. Our research systematically examines the response of these cells at different states of charge (SOC) through controlled dynamic tests. These tests offer insights into the failure response of the cells. By analyzing the data, we gain a deeper understanding of the conditions that could trigger thermal runaway under mechanical abuse loadings, representative of EV crashes, a critical safety concern in EV battery systems. The experimental setup and methodologies are presented in this paper, alongside key findings that highlight the importance of
Patanwala, HuzefaKong, KevinChalla, VidyuDarvish, KuroshSahraei, Elham
As electric vehicles (EVs) become increasingly prevalent, ensuring the safety of their battery systems is paramount. Lithium-ion batteries, present unique safety challenges due to their high energy density and the potential for failure under certain conditions. There is an extensive amount of research on pouch and cylindrical cells, however, prismatic cells have not received similar attention. This study presents an extensive series of experimental tests conducted on prismatic cells from two different manufacturers. These tests include flat punch, hemispherical punch, axial compression and three-point bending tests, all designed to assess the cells’ mechanical properties and failure behavior. A model was developed simulating the behavior of the cell under local loading scenarios. While this paper focuses primarily on testing methodologies, initial findings and an introductory FEA model, future work will incorporate these experimental results into detailed FEA models across all loading
Patanwala, HuzefaSong, YihanSahraei, Elham
The number of electric vehicles (EVs) has significantly increased in recent years. Safety performance of EVs is at least at the same level as that of conventional vehicles. To evaluate battery safety and ensure passenger protection, several standard tests and regulations for EV batteries have been established, including IEC 62660-3, ISO 6469-1, and UN/ECE/R100 Revision 3. ISO 6469-1:2019/Amd 1 specifies thermal propagation (TP) test to evaluate battery robustness against thermal runaway (TR) in a single cell. Moreover, UN/ECE/R100 Revision 3 aims to provide sufficient egress time to protect passengers in the event of a TR in a single cell. Typically, these tests initiate TR in a cell within a battery pack using either a heater or nail. In the heater method, if the gap between cells is larger than the heater’s thickness and there are no installation constraints due to components, almost any cell can be chosen as the initiating cell. However, if the gap between cells is smaller than the
Maeda, KiyotakaTakahashi, Masashi
This study evaluates the performance of alternative powertrains for Class 8 heavy-duty trucks under various real-world driving conditions, cargo loads, and operating ranges. Energy consumption, greenhouse gas emissions, and the Levelized Cost of Driving (LCOD) were assessed for different powertrain technologies in 2024, 2035, and 2050, considering anticipated technological advancements. The analysis employed simulation models that accurately reflect vehicle dynamics, powertrain components, and energy storage systems, leveraging real-world driving data. An integrated simulation workflow was implemented using Argonne National Laboratory's POLARIS, SVTrip, Autonomie, and TechScape software. Additionally, a sensitivity analysis was performed to assess how fluctuations in energy and fuel costs impact the cost-effectiveness of various powertrain options. By 2035, battery electric trucks (BEVs) demonstrate strong cost competitiveness in the 0-250 mile and 250-500 mile ranges, especially when
Mansour, CharbelBou Gebrael, JulienKancharla, AmarendraFreyermuth, VincentIslam, Ehsan SabriVijayagopal, RamSahin, OlcayZuniga, NataliaNieto Prada, DanielaAlhajjar, MichelRousseau, AymericBorhan, HoseinaliEl Ganaoui-Mourlan, Ouafae
The use of lithium-ion batteries in electric vehicles marks a major progression in the automotive sector. Energy storage systems extensively make use of these batteries. The extended life cycle, low self-discharge rates, high energy density, and eco-friendliness of lithium-ion batteries are well-known. However, Temperature sensitivity has an adverse effect on lithium-ion battery safety, durability, and performance. Thus, maintaining ideal operating conditions and reducing the chance of thermal runaway depend heavily on efficient thermal management. To address this, experimental study was conducted on various battery thermal management techniques, including active, passive, and hybrid approaches. These techniques were investigated for their cooling efficiencies under different operating conditions. The electro-thermal behavior of cylindrical lithium-ion battery cells, battery packs, and supervisory control techniques were simulated in the study using MATLAB Simulink, Simscape, and
Thangaraju, ShanmuganathanN, MeenakshiGanesan, Maragatham
The problem of monitoring the parametric failures of a traction electric drive unit consisting of an inverter, a traction machine and a gearbox when interacting with a battery management system has been solved. The strategy for solving the problem is considered for an electric drive with three-phase synchronous and induction machines. The drive power elements perform electromechanical energy conversion with additional losses. The losses are caused by deviations of the element parameters from the nominal values during operation. Monitoring gradual failures by additional losses is adopted as a key concept of on-board diagnostics. Deviation monitoring places increased demands on the information support and accuracy of mathematical models of power elements. We take into account that the first harmonics of currents and voltages of a three-phase circuit are the dominant energy source, higher harmonics of PWM appear as harmonic losses, and mechanical losses in the rotor and gearbox can be
Smolin, VictorGladyshev, SergeyTopolskaya, Irina
This Paper will focus on simulating thermal runaway propagation within a battery cell and module. The thermal runaway model parameters are derived from accelerating rate calorimeter (ARC). The simulation involves a thermal runaway propagation model that converts the stored energy of the battery materials into thermal energy, thereby simulating the propagation of thermal runaway. The initiation of thermal runaway is modelled through a nail penetration event, represented by a heat profile in the nail region. The resulting temperature rise in this area triggers the short propagation model, leading to the spread of thermal runaway. For the single-cell simulation, the 1-equation thermal runaway model is used, focusing on the direct energy conversion and propagation within the cell. In contrast, the module simulation involves a more complex scenario. Here, an initial temperature rise near the nail region activates a short propagation model, which subsequently triggers the 4-equation thermal
Wakale, AnilMa, ShihuHu, Xiao
Thermal runaway in battery cells presents a critical safety concern, emphasizing the need for a thorough understanding of thermal behavior to enhance battery safety and performance. This study introduces a newly developed AutoLion 3D thermal runaway model, which builds on the earlier AutoLion 1D framework and offers significantly faster computational performance compared to traditional CFD models. The model is validated through simulations of the heat-wait-search mode of the Accelerating Rate Calorimeter (ARC), accurately predicting thermal runaway by matching experimental temperature profiles from peer-reviewed studies. Once validated, the model is employed to investigate the thermal behavior of 3D LFPO cells under controlled heating conditions, applying heat to one or more surfaces at a time while modeling heat transfer from non-heated surfaces. The primary objective is to understand how these localized heating patterns impact temperature profiles, including average core temperatures
Hariharan, DeivanayagamGundlapally, Santhosh
Thermal runaway is a critical phenomenon in lithium batteries, characterized by a self-sustaining process due to internal chemical reactions, that is triggered once a certain temperature is reached within the cell. This event is often caused by overheating due to charge and discharge cycles and can lead to fires or explosions, posing a significant safety threat. The aim of this study is to induce thermal runaway on single cells in different ways to characterize the phenomenon and validate the simulation models present in Altair SimLab®. The work was conducted in several key phases. Initially, an experimental test was performed in a calorimeter (EV ARC HWS test) to collect temperature data of the Molicel 21700 P45B cell during thermal runaway under adiabatic conditions. These data were used for a simulation on a single cell, allowing a detailed comparison with the experimental results. Subsequently, a test was conducted on a single cell under operational conditions, overheated using a
Giuliano, LucaScrimieri, LuigiReitano, SimoneBerti Polato, DavideFerraris, AlessandroComerford, AndrewBhatnagar, Saakaar
A vital aspect of Ultra-Fast Charging (UFC) Li-Ion battery pack is its thermal management system, which impacts safety, performance, and cell longevity. Immersion cooling technology is more effective compared to indirect cold plate as heat can dissipate much quicker and has a potential to mitigate the thermal runaway propagation, improve pack overall performance, and cell life significantly. For design optimization and getting better insight, high fidelity Multiphysics-Multiscale simulations are required. Equivalent Circuit Model (ECM) based electro-thermally coupled multi-physics CFD simulations are performed to optimize the innovative busbar design, of a recently developed immersion cooled battery pack, which enables the capability to remove individual cell. Further, high fidelity 3D transient flow-thermal simulations have helped in optimizing the coolant flow direction, inlet positions, cell spacing and separator design for efficient flow distribution in the module. While high
Tyagi, RamavtarNegro, SergioBaranowski, AlexAtluri, Prasad
Items per page:
1 – 50 of 5572