Browse Topic: Robotics
The automation of labor-intensive picking and planting operations is having an immediate impact in the agricultural indutry. In its simplest form, robotic automation can reduce the labor and soil disturbance while enabling organic soil cover and increasing species diversification through precision approaches to planting, weeding, and spraying. With this, pesticides and fertilizers can be applied in a more targeted way, and with machinery visiting fields more frequently, earlier and more targeted intervention can occur before pests become established. Small, Mobile, and Autonomous Agricultural Robots identifies issues that need to be resolved fo for this technology to thrive, including improving methods of acquiring and labeling training data to facilitate more accurate models for specific applications. It also discusses concepts such as general-purpose mechanical platforms for use as carriers of agricultural automation systems with high stability, positional accuracy, and variable
Swimming robots play a crucial role in mapping pollution, studying aquatic ecosystems, and monitoring water quality in sensitive areas such as coral reefs or lake shores. However, many devices rely on noisy propellers, which can disturb or harm wildlife. The natural clutter in these environments — including plants, animals, and debris — also poses a challenge to robotic swimmers.
It’s a game a lot of us played as children — and maybe even later in life: unspooling measuring tape to see how far it would extend before bending. But to engineers at the University of California San Diego, this game was an inspiration, suggesting that measuring tape could become a great material for a robotic gripper.
Repartly, a startup based in Guetersloh, Germany, is using ABB’s collaborative robots to repair and refurbish electronic circuit boards in household appliances. Three GoFa cobots handle the sorting, visual inspection and precise soldering tasks enabling the company to enhance efficiency and maintain high quality standards.
Low-cost jelly-like materials, developed by researchers at the University of Cambridge, can sense strain, temperature, and humidity. And unlike earlier self-healing robots, they can also partially repair themselves at room temperature.
Innovators at NASA Johnson Space Center have developed a robotic system whose primary structural platform, or “orb,” can be injected into a pipe network and perform reconnaissance of piping infrastructure and other interior volumes. When deployed, this technology uses throttled fluid flow from a companion device for passive propulsion. A tethered line facilitates directional control by the orb’s operator, allowing it to navigate through various piping configurations, including 90° junctions.
Engineers have designed robots that crawl, swim, fly, and even slither like a snake, but no robot can hold a candle to a squirrel, which can parkour through a thicket of branches, leap across perilous gaps and execute pinpoint landings on the flimsiest of branches.
For the team at SmartCap, building top-notch gear for outdoor adventurers isn’t just a business — it’s a passion driven by their own love for the wild. But as demand for their rugged, modular truck caps soared after their move to North America in 2022, they hit a snag: How do you ramp up production without sacrificing the meticulous quality you are known for, all while navigating a tough labor market? Their answer? A bold step into the world of intelligent automation, teaming up with GrayMatter Robotics, and employing the company’s innovative Scan&Sand™ system.
Researchers have developed a tiny magnetic robot that can take 3D scans from deep within the body and could revolutionize early cancer detection.
A team of UCLA engineers and their colleagues have developed a new design strategy and 3D printing technique to build robots in one single step. The breakthrough enabled the entire mechanical and electronic systems needed to operate a robot to be manufactured all at once by a new type of 3D printing process for engineered active materials with multiple functions (also known as metamaterials). Once 3D printed, a “meta-bot” will be capable of propulsion, movement, sensing, and decision-making.
When we last heard from MELD Manufacturing, the large-scale 3D printer supplier was taking first place in the Robotics/Automation/Manufacturing category at the 2018 .
Accurate object pose estimation refers to the ability of a robot to determine both the position and orientation of an object. It is essential for robotics, especially in pick-and-place tasks, which are crucial in industries such as manufacturing and logistics. As robots are increasingly tasked with complex operations, their ability to precisely determine the six degrees of freedom (6D pose) of objects, position, and orientation, becomes critical. This ability ensures that robots can interact with objects in a reliable and safe manner. However, despite advancements in deep learning, the performance of 6D pose estimation algorithms largely depends on the quality of the data they are trained on.
Researchers at Universidad Carlos III de Madrid (UC3M) have developed a new soft joint model for robots with an asymmetrical triangular structure and an extremely thin central column. This breakthrough, recently patented, allows for versatility of movement, adaptability and safety, and will have a major impact in the field of robotics.
Drone show accidents highlight the challenges of maintaining safety in what engineers call “multiagent systems” — systems of multiple coordinated, collaborative, and computer-programmed agents, such as robots, drones, and self-driving cars.
Over the decades, robotics deployments have been driven by the rapid in-parallel research advances in sensing, actuation, simulation, algorithmic control, communication, and high-performance computing among others. Collectively, their integration within a cyber-physical-systems framework has supercharged the increasingly complex realization of the real-time ‘sense-think-act’ robotics paradigm. Successful functioning of modern-day robots relies on seamless integration of increasingly complex systems (coming together at the component-, subsystem-, system- and system-of-system levels) as well as their systematic treatment throughout the life-cycle (from cradle to grave). As a consequence, ‘dependency management’ between the physical/algorithmic inter-dependencies of the multiple system elements is crucial for enabling synergistic (or managing adversarial) outcomes. Furthermore, the steep learning curve for customizing the technology for platform specific deployment discourages domain
Los Angeles-based plastics contract manufacturer Kal Plastics deployed UR10e trimming cobot for a fraction of the cost and lead time of a CNC machine, cut trimming time nearly in half, and reduced late shipments to under one percent — all while improving employee safety and growth opportunities.
Advances in artificial intelligence (AI), machine learning (ML), and sensor fusion drive robotics functionality across many applications, including healthcare. Ongoing innovations in high-speed connectivity, edge computing, network redundancy, and fail-safe procedures crucial to optimizing robotics opportunities. The emergence of natural language processing and emotional AI functionality are poised to propel more intuitive, responsive, and adaptive human-machine interaction.
A team of engineers is on a mission to redefine mobility by providing innovative wearable solutions to physical therapists, orthotic and prosthetic professionals, and individuals experiencing walking impairment and disability. Co-founded by Ray Browning and Zach Lerner, Portland-based startup Biomotum, aims “to empower mobility by energizing every step” through their wearable robotics technology.
In creating a pair of new robots, Cornell researchers cultivated an unlikely component: fungal mycelia. By harnessing mycelia’s innate electrical signals, the researchers discovered a new way of controlling “biohybrid” robots that can potentially react to their environment better than their purely synthetic counterparts.
Researchers from the School of Engineering of the Hong Kong University of Science and Technology (HKUST) have successfully developed what they believe is the world’s smallest multifunctional biomedical robots. Capable of imaging, high-precision motion, and multifunctional operations like sampling, drug delivery, and laser ablation, the robot offers competitive imaging performance and a tenfold improvement in obstacle detection, paving the way for robotic applications in narrow and challenging channels of the human body, such as the lung’s end bronchi and the oviducts.
Researchers are developing soft sensor materials based on ceramics. Such sensors can feel temperature, strain, pressure, or humidity, for instance, which makes them interesting for use in medicine, but also in the field of soft robotics.
Robotics researchers have already made great strides in developing sensors that can perceive changes in position, pressure, and temperature — all of which are important for technologies like wearable devices and human-robot interfaces. But a hallmark of human perception is the ability to sense multiple stimuli at once, and this is something that robotics has struggled to achieve.
Researchers have developed a multifunctional sensor based on semiconductor fibers that emulates the five human senses. Prof. Bonghoon Kim, department of robotics and mechatronics engineering of Daegu Gyeongbuk Institute of Science & Technology (DGIST), conducted the study in collaboration with Prof. Sangwook Kim at KAIST, Prof. Janghwan Kim at Ajou University, and Prof. Jiwoong Kim at Soongsil University. The technology developed in the study is expected to be utilized in fields such as wearables, Internet of Things (IoT), electronic devices, and soft robotics.
Insect cyborgs may sound like science fiction, but it’s a relatively new phenomenon based on using electrical stimuli to control the movement of insects. These hybrid insect computer robots, as they are scientifically called, herald the future of small, high mobile, and efficient devices.
Soft-bending actuators have garnered significant interest in robotics and biomedical engineering due to their ability to mimic the bending motions of natural organisms. Using either positive or negative pressure, most soft pneumatic actuators for bending actuation have modified their design accordingly. In this study, we propose a novel soft bending actuator that utilizes combined positive and negative pressures to achieve enhanced performance and control. The actuator consists of a flexible elastomeric chamber divided into two compartments: a positive pressure chamber and a negative pressure chamber. Controlled bending motion can be achieved by selectively applying positive and negative pressures to the respective chambers. The combined positive and negative pressure allowed for faster response times and increased flexibility compared to traditional soft actuators. Because of its adaptability, controllability, and improved performance can be used for various jobs that call for careful
A fast and agile robotic insect developed by MIT could someday aid in mechanical pollination.
A team led by Emily Davidson has reported that they used a class of widely available polymers called thermoplastic elastomers to create soft 3D printed structures with tunable stiffness. Engineers can design the print path used by the 3D printer to program the plastic’s physical properties so that a device can stretch and flex repeatedly in one direction while remaining rigid in another. Davidson, an assistant professor of chemical and biological engineering, says this approach to engineering soft architected materials could have many uses, such as soft robots, medical devices and prosthetics, strong lightweight helmets, and custom high-performance shoe soles.
Soft skin coverings and touch sensors have emerged as a promising feature for robots that are both safer and more intuitive for human interaction, but they are expensive and difficult to make. A recent study demonstrates that soft skin pads doubling as sensors made from thermoplastic urethane can be efficiently manufactured using 3D printers.
Researchers have helped create a new 3D printing approach for shape-changing materials that are likened to muscles, opening the door for improved applications in robotics as well as biomedical and energy devices.
Nowadays, there are many technologies emerging like firefighting robots, quadcopters, and drones which are capable of operating in hazardous disaster scenarios. In recent years, fire emergencies have become an increasingly serious problem, leading to hundreds of deaths, thousands of injuries, and the destruction of property worth millions of dollars. According to the National Crime Records Bureau (NCRB), India recorded approximately 1,218 fire incidents resulting in 1,694 deaths in 2020 alone. Globally, the World Health Organization (WHO) estimates that fires account for around 265,000 deaths each year, with the majority occurring in low- and middle-income countries. The existing fire-extinguishing systems are often inefficient and lack proper testing, causing significant delays in firefighting efforts. These delays become even more critical in situations involving high-rise buildings or bushfires, where reaching the affected areas is particularly challenging. The leading causes of
Need a moment of levity? Try watching videos of astronauts falling on the Moon. NASA’s outtakes of Apollo astronauts tripping and stumbling as they bounce in slow motion are delightfully relatable. For MIT engineers, the lunar bloopers also highlight an opportunity to innovate.
Researchers have developed a fully embedded wireless brain neural signal recorder. The device was created by Prof. Jang Kyung-in of the department of robotics and mechanical electronics at DGIST in collaboration with a research team led by Lee Young-jeon of the Korea Research Institute of Bioscience & Biotechnology.
Items per page:
50
1 – 50 of 2036