Browse Topic: Automation
The rapid introduction of new Automated Driving Systems (ADS) in the last years has led to an urge for robust methodologies for the type approval of vehicles equipped with such technologies. As a result, different Regulations addressing this field have been adopted. These Regulations are mainly based in the New Assessment and Testing Methodology (NATM) developed within the World Forum for the Harmonisation of Vehicle Regulations (WP29). However, the complexity of the regulatory ecosystem extends beyond type approval. This complexity requires a thorough analysis in order to avoid any possible gap which may jeopardise the feasibility of Automated Driving Vehicles deployment. This paper analyses the possible mismatches among the different regulations currently in place or under development and proposes a holistic approach, where the concept of the Operational Design Domain (ODD) takes a relevant role.
Nowadays, digital instrument clusters and modern infotainment systems are crucial parts of cars that improve the user experience and offer vital information. It is essential to guarantee the quality and dependability of these systems, particularly in light of safety regulations such as ISO 26262. Nevertheless, current testing approaches frequently depend on manual labor, which is laborious, prone to mistakes, and challenging to scale, particularly in agile development settings. This study presents a two-phase framework that uses machine learning (ML), computer vision (CV), and image processing techniques to automate the testing of infotainment and digital cluster systems. The NVIDIA Jetson Orin Nano Developer Kit and high-resolution cameras are used in Phase 1's open loop testing setup to record visual data from infotainment and instrument cluster displays. Without requiring input from the system being tested, this phase concentrates on both static and dynamic user interface analysis
This paper elucidates the implementation of software-controlled synchronous rectification and dead time configuration for bi-directional controlled DC motors. These motors are extensively utilized in applications such as robotics and automotive systems to prolong their operational lifespan. Synchronous rectification mitigates large current spikes in the H-bridge, reducing conduction losses and improving efficiency [1]. Dead time configuration prevents shoot-through conditions, enhancing motor efficiency and longevity. Experimental results demonstrate significant improvements in motor performance, including reduced thermal stress, decreased power consumption, and increased reliability [2]. The reduction in power consumption helps to minimize thermal stress, thereby enhancing the overall efficiency and longevity of the motor.
It all started when Owen Kent and Todd Roberts became roommates at the University of California Berkeley. Owen has muscular dystrophy and had recently acquired a robotic arm, which he noticed he was using to do range of motion. Todd had come to Berkeley to study mechanical engineering with a focus on biomechanics, and both were enrolled in Designing for the Human Body, a biomechanics course taught by Mechanical Engineering Professor Grace O’Connell.
EPFL researchers have engineered a fiber-based electronic sensor that remains functional even when stretched to over 10 times its original length. The device holds promise for smart textiles, physical rehabilitation devices, and soft robotics.
This study presents a structured evaluation framework for reasonably foreseeable misuse in automated driving systems (ADS), grounded in the ISO 21448 Safety of the Intended Functionality (SOTIF) lifecycle. Although SOTIF emphasizes risks that arise from system limitations and user behavior, the standard lacks concrete guidance for validating misuse scenarios in practice. To address this gap, we propose an end-to-end methodology that integrates four components: (1) hazard modeling via system–theoretic process analysis (STPA), (2) probabilistic risk quantification through numerical simulation, (3) verification using high-fidelity simulation, and (4) empirical validation via driver-in-the-loop system (DILS) experiments. Each component is aligned with specific SOTIF clauses to ensure lifecycle compliance. We apply this framework to a case of driver overreliance on automated emergency braking (AEB) at high speeds—a condition where system intervention is intentionally suppressed. Initial
Items per page:
50
1 – 50 of 3224