Browse Topic: Automation
Bearings are essential mechanical components that support external loads and facilitate rotational motion. With the increasing demand for high-performance applications in industries such as semiconductors, aerospace, and robotics, the need for accurate and robust performance evaluation has intensified. Traditionally, bearing performance has been assessed using static or quasi-static theoretical approaches. However, these methods are limited in their ability to capture time-dependent behaviors, which are critical in real-world applications. In this study, a rigid body dynamics analysis was proposed to evaluate the time-dependent behavior of bearings. The methodology was first applied to a deep groove ball bearing, and the results were compared with those obtained from bearing theory to validate the approach. Subsequently, the method was extended to an automotive wheel bearing, and the time-dependent contact angles and ball loads were analyzed under axial and radial loading conditions
Mobileye announced in June that its ongoing work with Volkswagen will deliver the automaker's first production SAE Level 4 autonomous vehicles sometime in 2026. The first of these vehicles will be the Volkswagen ID. Buzz AV, which will use the Mobileye Drive autonomous platform and will most likely deploy first in the U.S next year. The ID. Buzz AV is one of four programs Mobileye is working on with VW, Dan Galves, chief communications officer at Mobileye, told SAE Media, and the variety and size of the programs will be key to making AVs scale. The vehicles in each of these programs use the same Mobileye core, with similar cameras and sensors and the same system on chip (SOC), even as the details differ.
EPFL researchers have developed a customizable soft robotic system that uses compressed air to produce shape changes, vibrations, and other haptic, or tactile, feedback in a variety of configurations. The device holds significant promise for applications in virtual reality, physical therapy, and rehabilitation.
The automation of labor-intensive picking and planting operations is having an immediate impact in the agricultural indutry. In its simplest form, robotic automation can reduce the labor and soil disturbance while enabling organic soil cover and increasing species diversification through precision approaches to planting, weeding, and spraying. With this, pesticides and fertilizers can be applied in a more targeted way, and with machinery visiting fields more frequently, earlier and more targeted intervention can occur before pests become established. Small, Mobile, and Autonomous Agricultural Robots identifies issues that need to be resolved fo for this technology to thrive, including improving methods of acquiring and labeling training data to facilitate more accurate models for specific applications. It also discusses concepts such as general-purpose mechanical platforms for use as carriers of agricultural automation systems with high stability, positional accuracy, and variable
Specialized robots that can both fly and drive typically touch down on land before attempting to transform and drive away. But when the landing terrain is rough, these robots sometimes get stuck and are unable to continue operating. Now a team of Caltech engineers has developed a real-life Transformer that has the “brains” to morph in midair, allowing the dronelike robot to smoothly roll away and begin its ground operations without pause. The increased agility and robustness of such robots could be particularly useful for commercial delivery systems and robotic explorers.
A human clearing junk out of an attic can often guess the contents of a box simply by picking it up and giving it a shake, without the need to see what’s inside. Researchers from MIT, Amazon Robotics, and the University of British Columbia have taught robots to do something similar.
San Francisco startup Canvas has developed a robotic system handling one of the most labor-intensive trades in construction: drywall finishing. Leveraging robotic arms from Universal Robots, Canvas has built a machine that reduces the usual five to seven days of spraying and sanding the drywall to just around two days for both Level 4 and Level 5 finishes.
Ready for that long-awaited summer vacation? First, you’ll need to pack all the items required for your trip into a suitcase, making sure everything fits securely without crushing anything fragile. Because humans possess strong visual and geometric reasoning skills, this is usually a straightforward problem, even if it may take a bit of finagling to squeeze everything in.
Warehouse logistics increasingly rely on automation in the form of autonomous mobile robots (AMRs), scanners, complex conveyors, and fleet management systems for seamless operation, but it’s the ubiquitous, century-old pallet that remains the critical support system. Make no mistake, if even one of those thousands of pallets is defective, it can create havoc in the warehouse.
Researchers have created a light-powered soft robot that can carry loads through the air along established tracks, similar to cable cars or aerial trams. The soft robot operates autonomously, can climb slopes at angles of up to 80°, and can carry loads up to 12 times its weight.
Imagine a robot that can walk, without electronics, and only with the addition of a cartridge of compressed gas, right off the 3D printer. It can also be printed in one go, from one material.
The wealth of information provided by our senses that allows our brain to navigate the world around us is remarkable. Touch, smell, hearing, and a strong sense of balance are crucial to making it through what to us seem like easy environments such as a relaxing hike on a weekend morning.
Not a traditional university lab, Harvard University’s Move Lab employs professional engineers, product developers, and academics who work across disciplines to bring research innovations to market. The lab is focused on human performance enhancement to protect people’s physical ability to guard against injury, extend their abilities beyond the limits of advancing age, and restore them to people who have lost them. They have developed wearable solutions that support functional movements and allow impaired individuals to more easily interact with their environment.
We present DISRUPT, a research project to develop a cooperative traffic perception and prediction system based on networked infrastructure and vehicle sensors. Decentralized tracking and prediction algorithms are used to estimate the dynamic state of road users and predict their state in the near future. Compared to centralized approaches, which currently dominate traffic perception, decentralized algorithms offer advantages such as greater flexibility, robustness and scalability. Mobile sensor boxes are used as infrastructure sensors and the locally calculated state estimates are communicated in such a way that they can augment local estimates from other sensor boxes and/or vehicles. In addition, the information is transferred to a cloud that collects the local estimates and provides traffic visualization functionalities. The prediction module then calculates the future dynamic state based on neurocognitive behavior models and a measure of a road user's risk of being involved in
Engineers have designed robots that crawl, swim, fly, and even slither like a snake, but no robot can hold a candle to a squirrel, which can parkour through a thicket of branches, leap across perilous gaps and execute pinpoint landings on the flimsiest of branches.
For the team at SmartCap, building top-notch gear for outdoor adventurers isn’t just a business — it’s a passion driven by their own love for the wild. But as demand for their rugged, modular truck caps soared after their move to North America in 2022, they hit a snag: How do you ramp up production without sacrificing the meticulous quality you are known for, all while navigating a tough labor market? Their answer? A bold step into the world of intelligent automation, teaming up with GrayMatter Robotics, and employing the company’s innovative Scan&Sand™ system.
Researchers have developed a tiny magnetic robot that can take 3D scans from deep within the body and could revolutionize early cancer detection.
A team of UCLA engineers and their colleagues have developed a new design strategy and 3D printing technique to build robots in one single step. The breakthrough enabled the entire mechanical and electronic systems needed to operate a robot to be manufactured all at once by a new type of 3D printing process for engineered active materials with multiple functions (also known as metamaterials). Once 3D printed, a “meta-bot” will be capable of propulsion, movement, sensing, and decision-making.
The global medical device manufacturing industry is undergoing a rapid transformation driven by technological innovation, automation, and increasing demands for customized, high-quality care. For engineers at the heart of medtech manufacturing, understanding the latest technologies is crucial not only for maintaining competitiveness but also for ensuring regulatory compliance, improving time to market, and optimizing production workflows.
Swimming robots play a crucial role in mapping pollution, studying aquatic ecosystems, and monitoring water quality in sensitive areas such as coral reefs or lake shores. However, many devices rely on noisy propellers, which can disturb or harm wildlife. The natural clutter in these environments — including plants, animals, and debris — also poses a challenge to robotic swimmers.
It’s a game a lot of us played as children — and maybe even later in life: unspooling measuring tape to see how far it would extend before bending. But to engineers at the University of California San Diego, this game was an inspiration, suggesting that measuring tape could become a great material for a robotic gripper.
Repartly, a startup based in Guetersloh, Germany, is using ABB’s collaborative robots to repair and refurbish electronic circuit boards in household appliances. Three GoFa cobots handle the sorting, visual inspection and precise soldering tasks enabling the company to enhance efficiency and maintain high quality standards.
Low-cost jelly-like materials, developed by researchers at the University of Cambridge, can sense strain, temperature, and humidity. And unlike earlier self-healing robots, they can also partially repair themselves at room temperature.
Innovators at NASA Johnson Space Center have developed a robotic system whose primary structural platform, or “orb,” can be injected into a pipe network and perform reconnaissance of piping infrastructure and other interior volumes. When deployed, this technology uses throttled fluid flow from a companion device for passive propulsion. A tethered line facilitates directional control by the orb’s operator, allowing it to navigate through various piping configurations, including 90° junctions.
When we last heard from MELD Manufacturing, the large-scale 3D printer supplier was taking first place in the Robotics/Automation/Manufacturing category at the 2018 .
Letter from the Guest Editors
Items per page:
50
1 – 50 of 3120