Browse Topic: Automation
The rapid introduction of new Automated Driving Systems (ADS) in the last years has led to an urge for robust methodologies for the type approval of vehicles equipped with such technologies. As a result, different Regulations addressing this field have been adopted. These Regulations are mainly based in the New Assessment and Testing Methodology (NATM) developed within the World Forum for the Harmonisation of Vehicle Regulations (WP29). However, the complexity of the regulatory ecosystem extends beyond type approval. This complexity requires a thorough analysis in order to avoid any possible gap which may jeopardise the feasibility of Automated Driving Vehicles deployment. This paper analyses the possible mismatches among the different regulations currently in place or under development and proposes a holistic approach, where the concept of the Operational Design Domain (ODD) takes a relevant role.
This paper elucidates the implementation of software-controlled synchronous rectification and dead time configuration for bi-directional controlled DC motors. These motors are extensively utilized in applications such as robotics and automotive systems to prolong their operational lifespan. Synchronous rectification mitigates large current spikes in the H-bridge, reducing conduction losses and improving efficiency [1]. Dead time configuration prevents shoot-through conditions, enhancing motor efficiency and longevity. Experimental results demonstrate significant improvements in motor performance, including reduced thermal stress, decreased power consumption, and increased reliability [2]. The reduction in power consumption helps to minimize thermal stress, thereby enhancing the overall efficiency and longevity of the motor.
This study presents a structured evaluation framework for reasonably foreseeable misuse in automated driving systems (ADS), grounded in the ISO 21448 Safety of the Intended Functionality (SOTIF) lifecycle. Although SOTIF emphasizes risks that arise from system limitations and user behavior, the standard lacks concrete guidance for validating misuse scenarios in practice. To address this gap, we propose an end-to-end methodology that integrates four components: (1) hazard modeling via system–theoretic process analysis (STPA), (2) probabilistic risk quantification through numerical simulation, (3) verification using high-fidelity simulation, and (4) empirical validation via driver-in-the-loop system (DILS) experiments. Each component is aligned with specific SOTIF clauses to ensure lifecycle compliance. We apply this framework to a case of driver overreliance on automated emergency braking (AEB) at high speeds—a condition where system intervention is intentionally suppressed. Initial
TOC
Robots may soon have a new way to communicate with people. Not through words or screens, but with light and images projected directly onto the world around them.
Researchers at the University of California San Diego have developed a soft robotic skin that enables vine robots that are just a few millimeters wide to navigate convoluted paths and fragile environments. To accomplish this, the researchers integrated a very thin layer of actuators made of liquid crystal elastomer at strategic locations in the soft skin. The robot is steered by controlling the pressure inside its body and temperature of the actuators.
Like octopi squeezing through a tiny sea cave, metatruss robots can adapt to demanding environments by changing their shape. These mighty morphing robots are made of trusses composed of hundreds of beams and joints that rotate and twist, enabling astonishing volumetric transformations.
Missions to the moon and other planets will require large-scale infrastructure that would benefit from autonomous assembly by robots without on-site human intervention. Modular and reconfigurable structures, such as those built from lattice-based building blocks, are reusable and easy to manufacture. Furthermore, reconfigurable systems have the potential to outperform traditional, fixed infrastructure in applications that require high levels of flexibility in addition to structural strength and rigidity. NASA Ames Research Center has developed a novel and efficient mobile bipedal robot system to construct low-mass, high precision, and largescale infrastructure.
From sorting objects in a warehouse to navigating furniture while vacuuming, robots today use sensors, software control systems, and moving parts to perform tasks. The harder the task or more complex the environment, the more cumbersome and expensive the electronic components.
Komatsu has launched a new excavator, the PC220LCi-12, that features its latest intelligent machine control technology. IMC 3.0 incorporates automation enhancements and a reported “construction-industry first” technology - factory-integrated 3D boundary control - designed to boost operator productivity. The intelligent machine, displayed previously at Bauma 2025 in Munich, Germany, has many of the same features as the new PC220LC-12 excavator, including a cab that is 28% larger, with 30% more legroom and 50% improved visibility compared to the PC210LC-11 model. Other advantages the new machines offer are up to a 20% increase in fuel efficiency thanks to a new electrohydraulic system and 129-kW (173-hp) next-generation engine, and up to a 20% reduction in maintenance costs due to longer replacement intervals for hydraulic oil and oil filters and longer cleaning intervals for the particulate filter.
Automating harvesters started out as a necessary solution to a severe labor shortage in 1990, Trebro Manufacturing states on its website. The Billings, Montana-based manufacturer has been producing turf harvesting machines since 1999, and its automated sod harvesters and entire harvesting process feature self-driving, automated-control functions. The company's tag line, “The Future of Turf Harvesting,” refers to its position of being the first in the industry to offer automated turf harvesting products. Trebro's AutoStack 3 harvester is an automated combine for turf that steers itself while an operator monitors and performs quality control actions when needed. The harvesting process combines several automated control processes.
This SAE Recommended Practice provides guidelines for the use, performance, installation, activation, and switching of marking lamps on Automated Driving System (ADS) equipped vehicles.
This article suggests a validation methodology for autonomous driving. The goal is to validate front camera sensors in advanced driver-assist systems (ADAS) based on virtually generated scenarios. The outcome is the CARLA-based hardware-in-the-loop (HIL) simulation environment (CHASE). It allows the rapid prototyping and validation of the ADAS software. We tested this general approach on a specific experimental application/setup for a vehicle front camera sensor. The setup results were then proven to be comparable to real-world sensor performance. The CARLA simulation environment was used in tandem with a vehicle CAN bus interface. This introduced a significantly improved realism to user-defined test scenarios and their results. The approach benefits from almost unlimited variability of traffic scenarios and the cost-efficient generation of massive testing data.
Over the past 25 years, the heavy fabrication and construction equipment industry has experienced significant transformation. Driven by a global surge in demand for construction machinery, manufacturers are under increasing pressure to deliver higher volumes within shorter timelines and at competitive costs. This demand surge has been compounded by workforce-related challenges, including a declining interest among the new generation in acquiring traditional manufacturing skills such as welding, heat treatment, and painting. Furthermore, the industry faces difficulties in staffing third-shift operations, which are essential to meet production targets. The adoption of automation technologies in heavy fabrication and construction equipment manufacturing has been gradual and often hindered by legacy product designs that were optimized for conventional manufacturing methods. As the industry transitions toward smart, connected manufacturing environments under the industry 4.0 paradigm, it
Items per page:
50
1 – 50 of 3198