Browse Topic: Soft robotics

Items (51)
Researchers at Universidad Carlos III de Madrid (UC3M) have developed a new soft joint model for robots with an asymmetrical triangular structure and an extremely thin central column. This breakthrough, recently patented, allows for versatility of movement, adaptability and safety, and will have a major impact in the field of robotics.
Researchers are developing soft sensor materials based on ceramics. Such sensors can feel temperature, strain, pressure, or humidity, for instance, which makes them interesting for use in medicine, but also in the field of soft robotics.
Researchers have developed a multifunctional sensor based on semiconductor fibers that emulates the five human senses. Prof. Bonghoon Kim, department of robotics and mechatronics engineering of Daegu Gyeongbuk Institute of Science & Technology (DGIST), conducted the study in collaboration with Prof. Sangwook Kim at KAIST, Prof. Janghwan Kim at Ajou University, and Prof. Jiwoong Kim at Soongsil University. The technology developed in the study is expected to be utilized in fields such as wearables, Internet of Things (IoT), electronic devices, and soft robotics.
Soft-bending actuators have garnered significant interest in robotics and biomedical engineering due to their ability to mimic the bending motions of natural organisms. Using either positive or negative pressure, most soft pneumatic actuators for bending actuation have modified their design accordingly. In this study, we propose a novel soft bending actuator that utilizes combined positive and negative pressures to achieve enhanced performance and control. The actuator consists of a flexible elastomeric chamber divided into two compartments: a positive pressure chamber and a negative pressure chamber. Controlled bending motion can be achieved by selectively applying positive and negative pressures to the respective chambers. The combined positive and negative pressure allowed for faster response times and increased flexibility compared to traditional soft actuators. Because of its adaptability, controllability, and improved performance can be used for various jobs that call for careful
Lalson, AbiramiSadique, Anwar
Soft-bending actuators are gaining considerable attention in robotics for handling delicate objects and adapting to complex shapes, making them ideal for biomimetic robots. Soft pneumatic actuators (SPAs) are preferred in soft robotics because to their safety and compliance characteristics. Using negative pressure for actuation, it enhances stability by reducing the risk of sudden or unintended movements, crucial for delicate handling and consistent performance. Negative pressure actuation is more energy-efficient, safe and are less prone to leakage, increasing reliability and durability. This paper involves development of a new soft pneumatic actuator design by comparing various designs and to determine its performance parameters. This paper depicts on designing, and fabricating flexible soft pneumatic actuators working under negative pressure for soft robotic applications. The material used for fabrication was liquid silicone rubber and uniaxial tensile tests were conducted to
Warriar J S, SreejithSadique, AnwarGeorge, Boby
Soft skin coverings and touch sensors have emerged as a promising feature for robots that are both safer and more intuitive for human interaction, but they are expensive and difficult to make. A recent study demonstrates that soft skin pads doubling as sensors made from thermoplastic urethane can be efficiently manufactured using 3D printers.
A team led by Emily Davidson has reported that they used a class of widely available polymers called thermoplastic elastomers to create soft 3D printed structures with tunable stiffness. Engineers can design the print path used by the 3D printer to program the plastic’s physical properties so that a device can stretch and flex repeatedly in one direction while remaining rigid in another. Davidson, an assistant professor of chemical and biological engineering, says this approach to engineering soft architected materials could have many uses, such as soft robots, medical devices and prosthetics, strong lightweight helmets, and custom high-performance shoe soles.
Researchers have developed a new soft robot design that engages in three simultaneous behaviors: rolling forward, spinning like a record, and following a path that orbits around a central point. The device, which operates without human or computer control, holds promise for developing soft robotic technologies that can be used to navigate and map unknown environments.
The future of wireless technology - from charging devices to boosting communication signals - relies on the antennas that transmit electromagnetic waves becoming increasingly versatile, durable and easy to manufacture. Researchers at Drexel University and the University of British Columbia believe kirigami, the ancient Japanese art of cutting and folding paper to create intricate three-dimensional designs, could provide a model for manufacturing the next generation of antennas. Recently published in the journal Nature Communications, research from the Drexel-UBC team showed how kirigami - a variation of origami - can transform a single sheet of acetate coated with conductive MXene ink into a flexible 3D microwave antenna whose transmission frequency can be adjusted simply by pulling or squeezing to slightly shift its shape.
Researchers have successfully demonstrated the four-dimensional (4D) printing of shape memory polymers in submicron dimensions that are comparable to the wavelength of visible light. 4D printing enables 3D-printed structures to change their configurations over time and is used in a variety of fields such as soft robotics, flexible electronics, and medical devices.
Conventional robotic grippers struggle with the unique shapes, properties, and delicate nature of different crops. Consequently, there has been an increasing demand for more versatile robots that can adapt to objects with various shapes, sizes, and textures.
Scientists have developed an innovative wearable fabric that is flexible but can stiffen on demand. Developed through a combination of geometric design, 3D printing, and robotic control, the new technology, RoboFabric, can quickly be made into medical devices or soft robotics.
To advance soft robotics, skin-integrated electronics, and biomedical devices, researchers have developed a 3D printed material that is soft and stretchable — traits needed for matching the properties of tissues and organs — and that self-assembles. Their approach employs a process that eliminates many drawbacks of previous fabrication methods, such as less conductivity or device failure.
For engineers working on soft robotics or wearable devices, keeping things light is a constant challenge: heavier materials require more energy to move around, and — in the case of wearables or prostheses — cause discomfort. Elastomers are synthetic polymers that can be manufactured with a range of mechanical properties, from stiff to stretchy, making them a popular material for such applications. But manufacturing elastomers that can be shaped into complex 3D structures that go from rigid to rubbery has been unfeasible until now.
Researchers have found a way to bind engineered skin tissue to the complex forms of humanoid robots. This brings with it potential benefits to robotic platforms such as increased mobility, self-healing abilities, embedded sensing capabilities and an increasingly lifelike appearance. Taking inspiration from human skin ligaments, the team, led by Professor Shoji Takeuchi of the University of Tokyo, included special perforations in a robot face, which helped a layer of skin take hold. Their research could be useful in the cosmetics industry and to help train plastic surgeons.
Researchers from North Carolina State University have demonstrated miniature soft hydraulic actuators that can be used to control the deformation and motion of soft robots that are less than a millimeter thick. The researchers have also demonstrated that this technique works with shape memory materials, allowing users to repeatedly lock the soft robots into a desired shape and return to the original shape as needed.
A research paper by scientists at the University of Coimbra proposed a soft robotic hand comprising soft actuator cores and an exoskeleton, featuring a multimaterial design aided by finite element analysis to define the hand geometry and promote finger’s bendability. The new research paper, published on August 8 in the journal Cyborg and Bionic Systems, presented the development, fabrication, and control of a bioinspired soft robotic hand and demonstrated finite element analysis can serve as a valuable tool to support the design and control of the hand’s fingers.
“Soft robots,” medical devices and implants, and next-generation drug delivery methods could soon be guided with magnetism — thanks to a metal-free magnetic gel developed by researchers at the University of Michigan and the Max Planck Institute for Intelligent Systems in Stuttgart, Germany.
Freezing is one of the most common and debilitating symptoms of Parkinson’s disease, a neurodegenerative disorder that affects more than 9 million people worldwide. When individuals with Parkinson’s disease freeze, they suddenly lose the ability to move their feet, often mid-stride, resulting in a series of staccato stutter steps that get shorter until the person stops altogether. These episodes are one of the biggest contributors to falls among people living with Parkinson’s disease.
For people who have suffered neurotrauma such as a stroke, everyday tasks can be extremely challenging because of decreased coordination and strength in one or both upper limbs. These problems have spurred the development of robotic devices to help enhance their abilities. However, the rigid nature of these assistive devices can be problematic, especially for more complex tasks like playing a musical instrument.
Researchers have laid the groundwork for a soft robotic tool and control system that could grant surgeons an unprecedented degree of maneuverability within the brain. A recent study demonstrates that the new system is both intuitive and highly accurate. The early results suggest that, with further development, the robot could one day speed up and improve the efficacy of minimally invasive surgeries for life-threatening brain aneurysms and other serious conditions.
Using a new type of dual-polymer material capable of responding dynamically to its environment, researchers have developed a set of modular hydrogel components that could be useful in a variety of soft robotic and biomedical applications.
Researchers have laid the groundwork for a soft robotic tool and control system that could grant surgeons an unprecedented degree of maneuverability within the brain. A recent study demonstrates that the new system is both intuitive and highly accurate. The early results suggest that, with further development, the robot could one day speed up and improve the efficacy of minimally invasive surgeries for life-threatening brain aneurysms and other serious conditions.
Utilizing soft, flexible materials such as cloth, paper, and silicone, soft robotic grippers is an essential device that acts like a robot’s hand to perform functions such as safely grasping and releasing objects. Unlike conventional rigid material grippers these are more flexible and safe. However, their low load capacity makes it difficult for them to lift heavy objects, and their poor grasping stability makes it easy to lose the object even under mild external impact.
Research teams at University of Galway and MIT have detailed a new breakthrough in medical device technology that could lead to intelligent, long-lasting, tailored treatment for patients thanks to soft robotics and artificial intelligence.
Muscle contraction hardening is not only essential for enhancing strength but also enables rapid reactions in living organisms. Taking inspiration from nature, the team of researchers at Queen Mary’s School of Engineering and Materials Science has successfully created an artificial muscle that seamlessly transitions between soft and hard states while also possessing the remarkable ability to sense forces and deformations.
Researchers at North Carolina State University have demonstrated a caterpillar-like soft robot that can move forward, backward, and even dip under narrow spaces. The caterpillar-bot’s movement is driven by a novel pattern of silver nanowires that use heat to control the way the robot bends.
A team of Cornell University researchers have laid the foundation for developing a new class of untethered soft robots that can achieve more complex motions with less reliance on explicit computation. By taking advantage of viscosity - the very thing that previously stymied the movement of soft robots - the new approach offloads control of a soft robot's cognitive capability from the “brain” onto the body using the robot's mechanical reflexes and ability to leverage its environment. A soft robot is made from soft, flexible materials, such as silicone or other elastomers, rather than rigid materials such as metal or plastic used in non-soft robots. Soft robots are designed to mimic the movement and flexibility of biological organisms.
One of the virtues of untethered soft robots is their ability to mechanically adapt to their surroundings and tasks, making them ideal for a range of roles, from tightening bolts in a factory to conducting deep-sea exploration. Now they are poised to become even more agile and controlled.
Some 30,000 people in the United States are affected by amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig’s disease, a neurodegenerative condition that damages cells in the brain and spinal cord necessary for movement.
A team of Cornell University researchers has laid the foundation for developing a new class of untethered soft robots that can achieve more complex motions with less reliance on explicit computation. By taking advantage of viscosity — the very thing that previously stymied the movement of soft robots — the new approach offloads control of a soft robot’s cognitive capability from the “brain” onto the body using the robot’s mechanical reflexes and ability to leverage its environment.
A team of engineers and clinicians has developed an ultra-thin, inflatable device that can be used to treat the most severe forms of pain without the need for invasive surgery. The device, developed by researchers at the University of Cambridge, uses a combination of soft robotic fabrication techniques, ultra-thin electronics, and microfluidics.
In the future, soft robotic hands with advanced sensors could help diagnose and care for patients or act as more lifelike prostheses.
Inflatable soft actuators that can change shape with a simple increase in pressure can be powerful, lightweight, and flexible components for soft robotic systems. But there’s a problem: These actuators always deform in the same way upon pressurization. To enhance the functionality of soft robots, it is important to enable additional and more complex modes of deformation in soft actuators.
Elastic polymers, known as elastomers, can be stretched and released repeatedly and are used in applications such as gloves and heart valves, where they need to last a long time without tearing. But elastic polymers can be stiff, or they can be tough, but they can't be both. This stiffness-toughness conflict is a challenge for scientists developing polymers that could be used in applications including tissue regeneration, bioadhesives, bioprinting, wearable electronics, and soft robots.
If the smart textiles of the future are going to survive, their components are going to need to be resilient. Researchers have developed an ultra-sensitive, resilient strain sensor that can be embedded in textiles and soft robotic systems.
Roboticists aim to mimic what natural biological entities have achieved — actions like moving, adapting to the environment, or sensing. Beyond traditional rigid robots, the field of soft robotics has recently emerged using compliant, flexible materials capable of adapting to their environment more efficiently than rigid ones. With this goal in mind, scientists have been working in the field of biohybrid robots or biobots. These generally are composed of muscle tissue, either cardiac or skeletal, and an artificial scaffold that can achieve crawling, grasping, or swimming. Unfortunately, current biobots are unable to emulate the performance of natural entities in terms of mobility and strength.
Researchers have created a low-cost method for soft, deformable robots to detect a range of physical interactions, from pats to punches to hugs, without relying on touch at all. Instead, a USB camera located inside the robot captures the shadow movements of hand gestures on the robot’s skin and classifies them with machine-learning software.
There are some tasks that traditional robots — the rigid and metallic kind — cannot perform. Soft-bodied robots may be able to interact with people more safely or slip into tight spaces with ease. But for robots to reliably complete their programmed duties, they need to know the whereabouts of all their body parts. That’s a difficult task for a soft robot that can deform in an infinite number of ways.
Roboticists aim to mimic what natural biological entities have achieved — actions like moving, adapting to the environment, or sensing. Beyond traditional rigid robots, the field of soft robotics has recently emerged using compliant, flexible materials capable of adapting to their environment more efficiently than rigid ones. With this goal in mind, scientists have been working in the field of biohybrid robots or biobots. These generally are composed of muscle tissue, either cardiac or skeletal, and an artificial scaffold that can achieve crawling, grasping, or swimming. Unfortunately, current biobots are unable to emulate the performance of natural entities in terms of mobility and strength.
Engineers have created a four-legged soft robot that doesn’t need any electronics to work. The robot only needs a constant source of pressurized air for all its functions including its controls and locomotion systems. Applications include robots that can operate in environments where electronics cannot function such as MRI machines or mine shafts. Soft robots are of particular interest because they easily adapt to their environment and operate safely near humans.
Researchers have developed a technique that programs 2D materials to transform into complex 3D shapes. Programming thin sheets, or 2D materials, to morph into 3D shapes can enable new technologies for soft robotics, deployable systems, and biomimetic manufacturing, which produces synthetic products that mimic biological processes. The 2D material programming technique allows the team to print 2D materials encoded with spatially controlled in-plane growth or contraction that can transform to programmed 3D structures.
While robots armored with hard exoskeletons are common, they’re not always ideal. Soft-bodied robots, inspired by fish or other soft creatures, might better adapt to changing environments and work more safely with people. Roboticists generally have to decide whether to design a hard- or soft-bodied robot for a particular task. But that tradeoff may no longer be necessary.
Inspired by the color-changing skin of cuttlefish, octopuses, and squids, engineers have created a 3D-printed smart gel that changes shape when exposed to light, becomes artificial muscle, and may lead to new military camouflage, soft robotics, and flexible displays. The team also developed a 3D-printed stretchy material that can reveal colors when light changes.
Fabricated using flexible, stretchable, and electrically conductive nanomaterials called MXenes, novel strain sensors were developed that are ultra-thin, battery-free, and can transmit data wirelessly. By controlling the surface textures of MXenes, researchers were able to control the sensing performance of strain sensors for various soft exoskeletons. The sensor design principles developed will significantly enhance the performance of electronic skins and soft robots.
Two-thirds of an octopus’s neurons are in its arms, meaning each arm literally has a mind of its own. Octopus arms can untie knots, open childproof bottles, and wrap around prey of any shape or size. The hundreds of suckers that cover their arms can form strong seals, even on rough surfaces underwater.
A perception system for soft robots was developed that is inspired by the way humans process information about their own bodies in space and in relation to other objects and people. The system includes a motion capture system, soft sensors, a neural network, and a soft robotic finger. The goal is to build a system that can predict a robot’s movements and internal state without relying on external sensors, much like humans do every day. The work has applications in human-robot interaction and wearable robotics as well as soft devices to correct disorders affecting muscles and bones.
Items per page:
1 – 50 of 51