Browse Topic: Level 5 (Full driving automation)
Safety Management Systems (SMSs) have been used in many safety-critical industries and are now being developed and deployed in the automated driving system (ADS)-equipped vehicle (AV) sector. Industries with decades of SMS deployment have established frameworks tailored to their specific context. Several frameworks for an AV industry SMS have been proposed or are currently under development. These frameworks borrow heavily from the aviation industry although the AV and aviation industries differ in many significant ways. In this context, there is a need to review the approach to develop an SMS that is tailored to the AV industry, building on generalized lessons learned from other safety-sensitive industries. A harmonized AV-industry SMS framework would establish a single set of SMS practices to address management of broad safety risks in an integrated manner and advance the establishment of a more mature regulatory framework. This paper outlines a proposed SMS framework for the AV
As the autonomy of ADAS features are moving from SAE level 0 autonomy to SAE level 5 autonomy of operation, reliance on AI/ML based algorithms in ADAS critical functions like perception, fusion and path planning are increasing predominantly. AI/ML based algorithms offer exceptional performance of the ADAS features, at the same time these advanced algorithms also bring in safety challenges as well. This paper explores the functional safety aspects of AI/ML based systems in ADAS functions like perception, object fusion and path planning, by discussing the safety requirements development for AI/ML systems, dataset safety life cycle, verification and validation of AI systems, and safety analysis used for AI systems. Among all the safety aspects listed above, emphasis is put on dataset safety lifecycle as that is not only the most important element for training ML based algorithms for ADAS usage, but also the most cumbersome and expensive. The safety characteristics associated with dataset
The rapid development of open-source Automated Driving System (ADS) stacks has created a pressing need for clear guidance on their evaluation and selection for specific use cases. This paper introduces a scenario-based evaluation framework combined with a modular simulation framework, offering a scalable methodology for assessing and benchmarking ADS solutions, including but not limited to off-the-shelf designs. The study highlights the lack of clear Operational Design Domain (ODD) descriptions in such systems. Without a common understanding, users must rely on subjective assumptions, which hinders the process of accurate system selection. To address this gap, the study proposes adopting a standardised ISO 34503 ODD description format within the ADS stacks. The application of the proposed framework is showcased through a case study evaluating two open-source systems, Autoware and Apollo. By first defining the assumed system’s ODD, then selecting a relevant scenario, and establishing
The rapid development of autonomous vehicles necessitates rigorous testing under diverse environmental conditions to ensure their reliability and safety. One of the most challenging scenarios for both human and machine vision is navigating through rain. This study introduces the Digitrans Rain Testbed, an innovative outdoor rain facility specifically designed to test and evaluate automotive sensors under realistic and controlled rain conditions. The rain plant features a wetted area of 600 square meters and a sprinkled rain volume of 600 cubic meters, providing a comprehensive environment to rigorously assess the performance of autonomous vehicle sensors. Rain poses a significant challenge due to the complex interaction of light with raindrops, leading to phenomena such as scattering, absorption, and reflection, which can severely impair sensor performance. Our facility replicates various rain intensities and conditions, enabling comprehensive testing of Radar, Lidar, and Camera
Some challenges, such as reworking airbags to meet all seating scenarios, will be solved by the OEM as the final system integrator. Rearward-facing front seats have generally been limited to concept cars that explore a far-away world in which SAE Level 5 autonomous driving has been perfected. Magna has rewritten that playbook, winning a contract with a Chinese OEM for a reconfigurable seating system that includes fully rotating front seats on long rails, creating an unusually flexible cabin. Currently configured for vehicles with two rows of seating, the system features power-swivel seats along rails or tracks nearly two meters (6.6 ft) long. The front passenger and driver seats can rotate 270 degrees.
In the evolving landscape of automated driving systems, the critical role of vehicle localization within the autonomous driving stack is increasingly evident. Traditional reliance on Global Navigation Satellite Systems (GNSS) proves to be inadequate, especially in urban areas where signal obstruction and multipath effects degrade accuracy. Addressing this challenge, this paper details the enhancement of a localization system for autonomous public transport vehicles, focusing on mitigating GNSS errors through the integration of a LiDAR sensor. The approach involves creating a 3D map using the factor graph-based LIO-SAM algorithm, which is further enhanced through the integration of wheel encoder and altitude data. Based on the generated map a LiDAR localization algorithm is used to determine the pose of the vehicle. The FAST-LIO based localization algorithm is enhanced by integrating relative LiDAR Odometry estimates and by using a simple yet effective delay compensation method to
On-road vehicles equipped with driving automation features are entering the mainstream public space. This category of vehicles is now extending to include those where a human might not be needed for operation on board. Several pilot programs are underway, and the first permits for commercial usage of vehicles without an onboard operator are being issued. However, questions like “How safe is safe enough?” and “What to do if the system fails?” persist. This is where remote operation comes in, which is an additional layer to the automated driving system where a human assists the so-called “driverless” vehicle in certain situations. Such remote-operation solutions introduce additional challenges and potential risks as the entire chain of “automated vehicle, communication network, and human operator” now needs to work together safely, effectively, and practically. And as much as there are technical questions regarding network latency, bandwidth, cybersecurity, etc., aspects like human
Artificial intelligence (AI)-based solutions are slowly making their way into mobile devices and other parts of our lives on a daily basis. By integrating AI into vehicles, many manufacturers are looking forward to developing autonomous cars. However, as of today, no existing autonomous vehicles (AVs) that are consumer ready have reached SAE Level 5 automation. To develop a consumer-ready AV, numerous problems need to be addressed. In this chapter we present a few of these unaddressed issues related to human-machine interaction design. They include interface implementation, speech interaction, emotion regulation, emotion detection, and driver trust. For each of these aspects, we present the subject in detail—including the area’s current state of research and development, its current challenges, and proposed solutions worth exploring.
The impending deployment of automated vehicles (AVs) represents a major shift in the traditional approach to ground transportation; its effects will inevitably be felt by parties directly involved with vehicle manufacturing and use (e.g., automotive original equipment manufacturers (OEMs), public transportation systems, heavy goods transportation providers) and those that play roles in the mobility ecosystem (e.g., aftermarket and maintenance industries, infrastructure and planning organizations, automotive insurance providers, marketers, telecommunication companies). The focus of this chapter is to address a topic overlooked by many who choose to view automated driving systems and AVs from a “10,000-foot perspective:” the topic of how AVs will communicate with other road users such as conventional (human-driven) vehicles, bicyclists, and pedestrians while in operation. This unsettled issue requires assessing the spectrum of existing modes of communication—both implicit and explicit
On-road vehicles equipped with driving automation features are entering the mainstream public space. This category of vehicles is now extending to include those where a human might not be needed for operation on board. Several pilot programs are underway, and the first permits for commercial usage of vehicles without an onboard operator are being issued. However, questions like “How safe is safe enough?” and “What to do if the system fails?” persist. This is where remote operation comes in, which is an additional layer to the automated driving system where a human assists the so-called “driverless” vehicle in certain situations. Such remote-operation solutions introduce additional challenges and potential risks as the entire chain of “automated vehicle, communication network, and human operator” now needs to work together safely, effectively, and practically. And as much as there are technical questions regarding network latency, bandwidth, cybersecurity, etc., aspects like human
This study assessed a driver’s ability to safely manage Super Cruise lane changes, both driver commanded (Lane Change on Demand, LCoD) and system triggered Automatic Lane Changes (ALC). Data was gathered under naturalistic conditions on public roads in the Washington, D.C. area with 12 drivers each of whom were provided with a Super Cruise equipped study vehicle over a 10-day exposure period. Drivers were shown how to operate Super Cruise (e.g., system displays, how to activate and disengage, etc.) and provided opportunities to initiate and experience commanded lane changes (LCoD), including how to override the system. Overall, drivers experienced 698 attempted Super Cruise lane changes, 510 Automatic and 188 commanded LCoD lane changes with drivers experiencing an average of 43 Automatic lane changes and 16 LCoD lane changes. Analyses characterized driver interactions during LCoD and ALC maneuvers exploring the extent to which drivers actively monitor the process and remain engaged
Letter from the Special Issue Editor
Recent rapid advancement in machine learning (ML) technologies have unlocked the potential for realizing advanced vehicle functions that were previously not feasible using traditional approaches to software development. One prominent example is the area of automated driving. However, there is much discussion regarding whether ML-based vehicle functions can be engineered to be acceptably safe, with concerns related to the inherent difficulty and ambiguity of the tasks to which the technology is applied. This leads to challenges in defining adequately safe responses for all possible situations and an acceptable level of residual risk, which is then compounded by the reliance on training data. The Path to Safe Machine Learning for Automotive Applications discusses the challenges involved in the application of ML to safety-critical vehicle functions and provides a set of recommendations within the context of current and upcoming safety standards. In summary, the potential of ML will only
In autonomous driving vehicles with an automation level greater than three, the autonomous system is responsible for safe driving, instead of the human driver. Hence, the driving safety of autonomous driving vehicles must be ensured before they are used on the road. Because it is not realistic to evaluate all test conditions in real traffic, computer simulation methods can be used. Since driving safety performance can be evaluated by simulating different driving scenarios and calculating the criticality metrics that represent dangerous collision risks, it is necessary to study and define the criticality metrics for the type of driving scenarios. This study focused on the risk of collisions in the confluence area because it was known that the accident rate in the confluence area is much higher than on the main roadway. There have been several experimental studies on safe driving behaviors in the confluence area; however, there has been little study logically exploring the merging
Although SAE level 5 autonomous vehicles are not yet commercially available, they will need to be the most intelligent, secure, and safe autonomous vehicles with the highest level of automation. The vehicle will be able to drive itself in all lighting and weather conditions, at all times of the day, on all types of roads and in any traffic scenario. The human intervention in level 5 vehicles will be limited to passenger voice commands, which means level 5 autonomous vehicles need to be safe and capable of recovering fail operational with no intervention from the driver to guarantee the maximum safety for the passengers. In this paper a LiDAR-based fail-safe emergency maneuver system is proposed to be implemented in the level 5 autonomous vehicle. This system is composed of an external redundant 3600 spinning LiDAR sensor and a redundant ECU that is running a single task to steer and fully stop the vehicle in emergency situations (e.g., vehicle crash, system failure, sensor failures
Simulation plays a central role in almost every aspect of automotive product development. And as this month's cover story explains, ‘sim’ is extending its reach in automated-driving R&D, bringing efficiency to human factors and critical but tedious component-verification work. Some argue that most AV development should - and thanks to contemporary sim technology, can - be conducted in the virtual world. It's hard for me to imagine getting to consumer-ready SAE Level 4 and 5 driving automation without eventual heavy reliance on simulation-based validation. That notion comes hard against what's played out with Tesla, however. The EV leader effectively has leveraged its customers' on-the-road experiences to incrementally “harden” its automated-driving software. It's not an entirely off-the-ranch idea; many AV developers have relied on some sort of crowdsourcing data acquisition to help their systems learn. The difference, however, is that Tesla consigned this role - and its genuine risks
Artificial intelligence (AI)-based solutions are slowly making their way into our daily lives, integrating with our processes to enhance our lifestyles. This is major a technological component regarding the development of autonomous vehicles (AVs). However, as of today, no existing, consumer ready AV design has reached SAE Level 5 automation or fully integrates with the driver. Unsettled Issues in Vehicle Autonomy, AI and Human-Machine Interaction discusses vital issues related to AV interface design, diving into speech interaction, emotion detection and regulation, and driver trust. For each of these aspects, the report presents the current state of research and development, challenges, and solutions worth exploring. Click here to access the full SAE EDGETM Research Report portfolio.
Items per page:
50
1 – 50 of 61