Browse Topic: Automated driving systems
This SAE Recommended Practice provides guidelines for the use, performance, installation, activation, and switching of marking lamps on Automated Driving System (ADS) equipped vehicles.
This article suggests a validation methodology for autonomous driving. The goal is to validate front camera sensors in advanced driver-assist systems (ADAS) based on virtually generated scenarios. The outcome is the CARLA-based hardware-in-the-loop (HIL) simulation environment (CHASE). It allows the rapid prototyping and validation of the ADAS software. We tested this general approach on a specific experimental application/setup for a vehicle front camera sensor. The setup results were then proven to be comparable to real-world sensor performance. The CARLA simulation environment was used in tandem with a vehicle CAN bus interface. This introduced a significantly improved realism to user-defined test scenarios and their results. The approach benefits from almost unlimited variability of traffic scenarios and the cost-efficient generation of massive testing data.
This specification covers a premium aircraft-quality, low-alloy steel in the form of bars, forgings, mechanical tubing, and forging stock.
It is expected that Level 4 and 5 automated driving systems-dedicated vehicles (ADS-DVs) will eventually enable persons to travel at will who are otherwise unable to obtain a driver’s license for a conventional vehicle, namely, persons with certain visual, cognitive, and/or physical impairments. This information report focuses on these disabilities but also provides guidance for those with other disabilities. This report is limited to fleet-operated, on-demand, shared mobility scenarios, as this is widely considered to be the first way people will be able to interact with ADS-DVs. To be more specific, this report does not address fixed-route transit services or private vehicle ownership. Similarly, this report is focused on motor vehicles (refer to SAE J3016), not scooters, golf carts, etc. Lastly, this report does not address the design of chair lifts, ramps, or securements for persons who use wheeled mobility devices (WHMD) (e.g., wheelchair, electric cart, etc.), as these matters
Letter from the Guest Editors
Safety Management Systems (SMSs) have been used in many safety-critical industries and are now being developed and deployed in the automated driving system (ADS)-equipped vehicle (AV) sector. Industries with decades of SMS deployment have established frameworks tailored to their specific context. Several frameworks for an AV industry SMS have been proposed or are currently under development. These frameworks borrow heavily from the aviation industry although the AV and aviation industries differ in many significant ways. In this context, there is a need to review the approach to develop an SMS that is tailored to the AV industry, building on generalized lessons learned from other safety-sensitive industries. A harmonized AV-industry SMS framework would establish a single set of SMS practices to address management of broad safety risks in an integrated manner and advance the establishment of a more mature regulatory framework. This paper outlines a proposed SMS framework for the AV
The rapid development of autonomous vehicles necessitates rigorous testing under diverse environmental conditions to ensure their reliability and safety. One of the most challenging scenarios for both human and machine vision is navigating through rain. This study introduces the Digitrans Rain Testbed, an innovative outdoor rain facility specifically designed to test and evaluate automotive sensors under realistic and controlled rain conditions. The rain plant features a wetted area of 600 square meters and a sprinkled rain volume of 600 cubic meters, providing a comprehensive environment to rigorously assess the performance of autonomous vehicle sensors. Rain poses a significant challenge due to the complex interaction of light with raindrops, leading to phenomena such as scattering, absorption, and reflection, which can severely impair sensor performance. Our facility replicates various rain intensities and conditions, enabling comprehensive testing of Radar, Lidar, and Camera
The rapid development of open-source Automated Driving System (ADS) stacks has created a pressing need for clear guidance on their evaluation and selection for specific use cases. This paper introduces a scenario-based evaluation framework combined with a modular simulation framework, offering a scalable methodology for assessing and benchmarking ADS solutions, including but not limited to off-the-shelf designs. The study highlights the lack of clear Operational Design Domain (ODD) descriptions in such systems. Without a common understanding, users must rely on subjective assumptions, which hinders the process of accurate system selection. To address this gap, the study proposes adopting a standardised ISO 34503 ODD description format within the ADS stacks. The application of the proposed framework is showcased through a case study evaluating two open-source systems, Autoware and Apollo. By first defining the assumed system’s ODD, then selecting a relevant scenario, and establishing
Reproducing driving scenarios involving near-collisions and collisions in a simulator can be useful in the development and testing of autonomous vehicles, as it provides a safe environment to explore detailed vehicular behavior during these critical events. CARLA, an open-source driving simulator, has been widely used for reproducing driving scenarios. CARLA allows for both manual control and traffic manager control (the module that controls vehicles in autopilot manner in the simulation). However, current versions of CARLA are limited to setting the start and destination points for vehicles that are controlled by traffic manager, and are unable to replay precise waypoint paths that are collected from real-world collision and near-collision scenarios, due to the fact that the collision-free pathfinding modules are built into the system. This paper presents an extension to CARLA’s source code, enabling the replay of exact vehicle trajectories, irrespective of safety implications
Items per page:
50
1 – 50 of 382