Browse Topic: Automated driving systems
The rapid introduction of new Automated Driving Systems (ADS) in the last years has led to an urge for robust methodologies for the type approval of vehicles equipped with such technologies. As a result, different Regulations addressing this field have been adopted. These Regulations are mainly based in the New Assessment and Testing Methodology (NATM) developed within the World Forum for the Harmonisation of Vehicle Regulations (WP29). However, the complexity of the regulatory ecosystem extends beyond type approval. This complexity requires a thorough analysis in order to avoid any possible gap which may jeopardise the feasibility of Automated Driving Vehicles deployment. This paper analyses the possible mismatches among the different regulations currently in place or under development and proposes a holistic approach, where the concept of the Operational Design Domain (ODD) takes a relevant role.
This study presents a structured evaluation framework for reasonably foreseeable misuse in automated driving systems (ADS), grounded in the ISO 21448 Safety of the Intended Functionality (SOTIF) lifecycle. Although SOTIF emphasizes risks that arise from system limitations and user behavior, the standard lacks concrete guidance for validating misuse scenarios in practice. To address this gap, we propose an end-to-end methodology that integrates four components: (1) hazard modeling via system–theoretic process analysis (STPA), (2) probabilistic risk quantification through numerical simulation, (3) verification using high-fidelity simulation, and (4) empirical validation via driver-in-the-loop system (DILS) experiments. Each component is aligned with specific SOTIF clauses to ensure lifecycle compliance. We apply this framework to a case of driver overreliance on automated emergency braking (AEB) at high speeds—a condition where system intervention is intentionally suppressed. Initial
TOC
This SAE Recommended Practice provides guidelines for the use, performance, installation, activation, and switching of marking lamps on Automated Driving System (ADS) equipped vehicles.
This article suggests a validation methodology for autonomous driving. The goal is to validate front camera sensors in advanced driver-assist systems (ADAS) based on virtually generated scenarios. The outcome is the CARLA-based hardware-in-the-loop (HIL) simulation environment (CHASE). It allows the rapid prototyping and validation of the ADAS software. We tested this general approach on a specific experimental application/setup for a vehicle front camera sensor. The setup results were then proven to be comparable to real-world sensor performance. The CARLA simulation environment was used in tandem with a vehicle CAN bus interface. This introduced a significantly improved realism to user-defined test scenarios and their results. The approach benefits from almost unlimited variability of traffic scenarios and the cost-efficient generation of massive testing data.
It is expected that Level 4 and 5 automated driving systems-dedicated vehicles (ADS-DVs) will eventually enable persons to travel at will who are otherwise unable to obtain a driver’s license for a conventional vehicle, namely, persons with certain visual, cognitive, and/or physical impairments. This information report focuses on these disabilities but also provides guidance for those with other disabilities. This report is limited to fleet-operated, on-demand, shared mobility scenarios, as this is widely considered to be the first way people will be able to interact with ADS-DVs. To be more specific, this report does not address fixed-route transit services or private vehicle ownership. Similarly, this report is focused on motor vehicles (refer to SAE J3016), not scooters, golf carts, etc. Lastly, this report does not address the design of chair lifts, ramps, or securements for persons who use wheeled mobility devices (WHMD) (e.g., wheelchair, electric cart, etc.), as these matters
Letter from the Guest Editors
Safety Management Systems (SMSs) have been used in many safety-critical industries and are now being developed and deployed in the automated driving system (ADS)-equipped vehicle (AV) sector. Industries with decades of SMS deployment have established frameworks tailored to their specific context. Several frameworks for an AV industry SMS have been proposed or are currently under development. These frameworks borrow heavily from the aviation industry although the AV and aviation industries differ in many significant ways. In this context, there is a need to review the approach to develop an SMS that is tailored to the AV industry, building on generalized lessons learned from other safety-sensitive industries. A harmonized AV-industry SMS framework would establish a single set of SMS practices to address management of broad safety risks in an integrated manner and advance the establishment of a more mature regulatory framework. This paper outlines a proposed SMS framework for the AV
The rapid development of autonomous vehicles necessitates rigorous testing under diverse environmental conditions to ensure their reliability and safety. One of the most challenging scenarios for both human and machine vision is navigating through rain. This study introduces the Digitrans Rain Testbed, an innovative outdoor rain facility specifically designed to test and evaluate automotive sensors under realistic and controlled rain conditions. The rain plant features a wetted area of 600 square meters and a sprinkled rain volume of 600 cubic meters, providing a comprehensive environment to rigorously assess the performance of autonomous vehicle sensors. Rain poses a significant challenge due to the complex interaction of light with raindrops, leading to phenomena such as scattering, absorption, and reflection, which can severely impair sensor performance. Our facility replicates various rain intensities and conditions, enabling comprehensive testing of Radar, Lidar, and Camera
Items per page:
50
1 – 50 of 394