Browse Topic: Artificial intelligence (AI)
This paper aims to explore the application of machine learning techniques to the analysis of road suspension systems, with particular emphasis on mechanical leaf spring suspensions. These systems are essential for vehicle performance, as they guarantee comfort and stability while driving, and they have an intrinsically complex and non-linear dynamic behavior. Because of this complexity, traditional approaches often prove costly and insufficient to represent operating conditions. In this context, machine learning techniques stand out for their ability to learn patterns from experimental data, allowing the modelling of non-linear phenomena that characterize road implement suspensions. One of the main contributions of this study is the demonstration that machine learning algorithms are capable of identifying complex patterns to represent the behavior of the system, as well as facilitating the detection of anomalies and potential faults in the suspension system, contributing to predictive
The road network is a critical component of modern urban mobility systems, with signalized traffic intersections playing a pivotal role. Traditionally, traffic light phase timings and durations at intersections are designed by transportation engineers using historical traffic data. Some modern intersections employ trigger-based mechanisms to improve traffic flow; however, these systems often lack global awareness of traffic conditions across multiple intersections within a network. With the increasing availability of traffic data and advancements in machine learning, traffic light systems can be enhanced by modeling them as agents operating in an environment. This paper proposes a Reinforcement Learning (RL) based approach for multi-agent traffic light systems within a simulation environment. The simulation is calibrated using real-world traffic data, enabling RL agents to learn effective control strategies based on realistic scenarios. A key advantage of using a calibrated simulation
Letter from the Guest Editors
Aitech introduced its new artificial intelligence (AI)-enabled picosatellite constellation platform, IQSat, at the 40th annual Space Symposium in April. The platform is designed to bring ready to use commercial off the shelf (COTS) embedded computing to data heavy earth imaging and pattern recognition applications enabled by AI and machine learning (ML) processing and algorithms performed onboard a constellation of IQSats. Available as an individual platform or in constellations that could include thousands of picosatellites, IQSat will become available to customers in the fourth quarter of 2025.
The transportation industry is transforming with the integration of advanced data technologies, edge devices, and artificial intelligence (AI). Intelligent transportation systems (ITS) are pivotal in optimizing traffic flow and safety. Central to this are transportation management centers, which manage transportation systems, traffic flow, and incident responses. Leveraging Advanced Data Technologies for Smart Traffic Management explores emerging trends in transportation data, focusing on data collection, aggregation, and sharing. Effective data management, AI application, and secure data sharing are crucial for optimizing operations. Integrating edge devices with existing systems presents challenges impacting security, cost, and efficiency. Ultimately, AI in transportation offers significant opportunities to predict and manage traffic conditions. AI-driven tools analyze historical data and current conditions to forecast future events. The importance of multidisciplinary approaches and
With many stakeholders involved, and major investments supporting it, the advancements in automated driving (AD) are undoubtedly there. Generally speaking, the motivation for advancing AD is driver convenience and road safety. Regarding the development of AD, original equipment manufacturers, technology start-ups, and AD systems developers have taken different approaches for automated vehicles (AVs). Some manufacturers are on the path toward stand-alone vehicles, mostly relying on onboard sensors and intelligence. On the other hand, the connected, cooperative, and automated mobility (CCAM) approach relies on additional communication and information exchange to ensure safe and secure operation. CCAM holds great potential to improve traffic management, road safety, equity, and convenience. In both approaches, there are increasingly large amounts of data generated and used for AD functions in perception, situational awareness, path prediction, and decision-making. The use of artificial
While working with deaf students for more than a decade and a half, Bader Alsharif, Ph.D. candidate in the Florida Atlantic University Department of Electrical Engineering and Computer Science, saw firsthand the communication struggles that his students faced daily.
Items per page:
50
1 – 50 of 2111