Browse Topic: Machine learning

Items (1,106)
The generation of data plays a vital role in machine learning (ML) techniques by providing the foundation for training and improvement of forecast models. As one application area for these models, in-vehicle systems, like vehicle diagnostics, have the potential to enhance the reliability and durability of vehicles by utilizing ML models in the testing phases. However, acquiring a high volume of quality onboard diagnostics (OBD) data is time-consuming and poses challenges like the risk of exposing sensitive information. To address this issue, synthetic data generation offers a promising alternative that is already in use in other domains. Thereby, synthetic data allows the exploitation of knowledge found in original data, ensuring the privacy of sensitive data, with less time costs of data acquisition. The application of such synthetically generated data could be found in predictive maintenance, predictive diagnostics, anomaly detection, and others. For this purpose, the research
Vučinić, VeljkoHantschel, FrankKotschenreuther, Thomas
With the rapid development of smart transport and green emission concepts, accurate monitoring and management of vehicle emissions have become the key to achieving low-carbon transport. This study focuses on NOx emissions from transport trucks, which have a significant impact on the environment, and establishes a predictive model for NOx emissions based on the random forest model using actual operational data collected by the remote monitoring platform.The results show that the NOx prediction using the random forest model has excellent performance, with an average R2 of 0.928 and an average MAE of 43.3, demonstrating high accuracy. According to China's National Pollutant Emission Standard, NOx emissions greater than 500 ppm are defined as high emissions. Based on this standard, this paper introduces logistic regression, k-nearest neighbor, support vector machine and random forest model to predict the accuracy of high-emission classification, and the random forest model has the best
Lin, YingxinLi, Tiezhu
Nowadays, cognitive distraction in the process of driving has become a frequent phenomenon, which has led to a certain proportion of traffic accidents, causing a lot of property losses and casualties. Since the fact that cognitive distraction is mostly reflected in the driver's reception and thinking of information unrelated to driving, it is difficult to recognize it from the driver's facial features. As a result, the accuracy of prediction is usually lower relying solely on facial performance to detect cognitive distraction. In this research, fifty participants took part in our simulated driving experiment. And each participant conducted the experiment in four different traffic scenarios using a high-fidelity driving simulator, including three cognitive distraction scenarios and one normal driving scenarios. Firstly, we identified the facial performance indicators and vehicle performance indicators that had a significant effect on cognitive distraction through one-way ANOVA. Then we
Qu, ChixiongBao, QiongQu, QikaiShen, Yongjun
Items per page:
1 – 50 of 1106