Browse Topic: Software-in-the-loop (SIL)
Functional Mock-up Units (FMUs) have become a standard for enabling co-simulation and model exchange in vehicle development. However, traditional FMUs derived from physics-based models can be computationally intensive, especially in scenarios requiring real-time performance. This paper presents a Python-based approach for developing a Neural Network (NN) based FMU using deep learning techniques, aimed at accelerating vehicle simulation while ensuring high fidelity. The neural network was trained on vehicle simulation data and trained using Python frameworks such as TensorFlow. The trained model was then exported into FMU, enabling seamless integration with FMI-compliant platforms. The NN FMU replicates the thermal behavior of a vehicle with high accuracy while offering a significant reduction in computational load. Benchmark comparisons with a physical thermal model demonstrate that the proposed solution provides both efficiency and reliability across various driving conditions. The
Evaluating the impact of software changes on fuel consumption and emissions is a critical aspect of transmission development. To evaluate the trade-offs between performance improvements and potential negative effects on efficiency, a forward-looking Software-in-the-Loop (SiL) simulation has been developed. Unlike backward calculations that derive fuel consumption based solely on cycle speed and engine speed, this approach executes complete driving cycles as the Worldwide Harmonized Light-Duty Vehicle Test Cycle (WLTC) within a detailed SiL environment. By considering all relevant influencing factors in a dynamic simulation, the method provides a more accurate assessment of fuel consumption and emission differences between two versions of the transmission software. The significant contribution of this work lies in the high-fidelity integration of a real virtual Transmission Control Unit (vTCU) software within a comprehensive, validated forward-looking SiL environment. This approach
The calibration of automotive electronic control units is a critical and resource-intensive task in modern powertrain development. Optimizing parameters such as transmission shift schedules for minimum fuel consumption traditionally requires extensive prototype testing by expert calibrators. This process is costly, time-consuming, and subject to variability in environmental conditions and human judgment. In this paper, an artificial calibrator is introduced – a software agent that autonomously tunes transmission shift maps using reinforcement learning (RL) in a Software-in-the-Loop (SiL) simulation environment. The RL-based calibrator explores shift schedule parameters and learns from fuel consumption feedback, thereby achieving objective and reproducible optimizations within the controlled SiL environment. Applied to a 7-speed dual-clutch transmission (DCT) model of a Mild Hybrid Electric Vehicle (MHEV), the approach yielded significant fuel efficiency improvements. In a case study on
Nowadays, Software-in-the-Loop (SIL) represents a crucial methodology in the development and validation of control systems, particularly in sectors such as automotive, marine, and aerospace. It involves creating a virtual representation of a real environment with varying levels of accuracy. Using SIL techniques, engineers can develop and test software in the early stages of the development cycle, reducing overall time-to-market and costs. Typically, to simulate complex control systems, a primary tool is used to manage and integrate an entire application-specific environment composed of application software, plants, sensors and actuators, and communication protocols. Although several commercial solutions are currently available on the market to support SIL activities, Dumarey Softronix wanted to explore the possibility of developing an in-house software tool to leverage the benefits of SIL. This paper provides a high-level overview of the main steps involved in developing a complete SIL
Validation plays a crucial role in any Electronic Development process. This is true in the development of any automotive Electronic Control Unit (ECU) that utilizes the Automotive V process. From Research and Development (R&D) to End of Line (EOL), every automotive module goes through a plethora of Hardware (HW) and Software (SW) testing. This testing is tedious, time consuming, and inefficient. The purpose of this paper is to show a way to streamline validation in any part of the automotive V process using Python as a driving force to automate and control Hardware-in-the-loop (HIL) / Model-in-the-loop (MIL) / Software-in-the-loop (SIL) validation. The paper will propose and outline a framework to control test equipment, such as power supplies and oscilloscopes, load boxes, and external HW. The framework includes the ability to control CAN communication signals and messages. A visual Graphical User Interface (GUI) has also been created to provide simplified operation to the user
The evolution of automotive Electronic Control Unit (ECU) technology brings the additional safety, comfort, and control to the vehicle. With an exponential increase in the complexity involved in modern-day ECU, it is very important to verify and validate robustness, functionality, and reliability of ECU software [1]. As of now, Hardware in loop [HIL] and Vehicle in Loop validations are well known software functional validation methods. However, these methods require physical setup, which can incur more cost and time during the development phase. In recent years, ECU virtualization gained attention for development and validation of automotive ECUs [2]. The goal is to minimize the effort on software testing. This paper focuses on virtualization of Electric Vehicle (EV) powertrain system using SIL approach. The objective is to provide an adaptable EV-virtualization environment for virtual-ECU (vECU) verification and validation. This paper focuses on standardization of SIL simulation setup
The Virtual Autonomous Navigation Environment (VANE) is a set of tools that have been developed over a decade to assist autonomy developers in building autonomous systems. VANE has high-fidelity, physics-based sensors and vehicle models that interact with virtual environments built by utilizing decades of experience in characterizing environmental conditions. These models and environments are used in software-in-the-loop simulations to assist in the development and evaluation of autonomous vehicles in a cost-effective and time-sensitive manner. The software-in-the-loop simulations have been verified with data from concurrent physical testing and are used by autonomy developers to improve the safety, scalability, and cost effectiveness of testing autonomous vehicles.
Automated driving, electrification, cloud computing and the push toward software-defined vehicles are forcing automotive and commercial-vehicle developers to revamp design strategies. Tools suppliers are moving to help engineers develop and verify solutions that address the complete vehicle environment, a task that requires a growing number of design tools. During the recent dSPACE World Conference in Munich, Germany, several vehicle manufacturers described their strategies for coping with these trends. dSPACE, which supplies hardware/software-in-the-loop (HIL/SIL) tools, announced plans to see if tool makers can find a way to help developers by making it easier to integrate data created using different development software.
The front camera module is a fundamental component of a modern vehicle’s active safety architecture. The module supports many active safety features. Perception of the road environment, requests for driver notification or alert, and requests for vehicle actuation are among the camera software’s key functions. This paper presents a novel method of testing these functions virtually. First, the front camera module software is compiled and packaged in a Docker container capable of running on a standard Linux computer as a software in the loop (SiL). This container is then integrated with the active safety simulation tool that represents the vehicle plant model and allows modeling of test scenarios. Then the following simulation components form a closed loop: First, the active safety simulation tool generates a video data stream (VDS). Using an internet protocol, the tool sends the VDS to the camera SiL and other vehicle channels. The camera SiL performs its functions (e.g., object
Simulation of real time situations is a time tested software validation methodology in the automotive industry and array of simulation technologies have been in use for decades and is widely accepted and been part & parcel of software development cycle. While software that is being developed needs detailed plan, architecture and detailed design, it also matters during its development that, it is built in the right way from the very beginning and is fine tuned constantly. Especially for Software-In-Loop simulation (SIL), plenty of practices/tools/techniques/data are being used for simulation of system/software behavior. When it comes to choosing the right simulation technique and tools to be adopted, often there are discussions revolve around cost, feasibility, effectiveness, man-power, scalability, reusability etc. As automotive software validation is data driven, we deal with myriad of ground truth data for simulations, ranging from vehicle dynamics to vehicle models to environment
Autonomous vehicles (AVs) are self-contained vehicles equipped with control systems to execute various tasks. The Lane Departure Warning (LDW) system is widely employed to prevent the most common cause of vehicle collisions. An autonomous lane-departure system will aid and reduce such collisions. When the vehicle is at risk of drifting or departing its lane, the LDW system monitors its relative position to the lane edge and sends an alarming warning signal to the driver. This work uses an ML-based technique to detect lane markers in an Indian context using a high-resolution camera mounted on the car. Considering that, the LDW system requires three primary operations. The camera geometry information is used to divide the acquired image into two parts: a road part and a non-road component. Then, to circumvent the obstacles caused by the perspective effect, inverse perspective mapping is applied. Then, using a sliding window technique, lane markers are filtered, and Canny edge detection
In this article, a formation flying technique designed for a multiple unmanned aerial vehicles (multi-UAV) system to provide low-cost and efficient solution for civilian and military applications is presented. First, a modular leader-follower formation algorithm was developed to accomplish the formation flying with off-the-shelf low-cost components and sensors. Second, a proportional-integral-derivative (PID) controller was utilized for velocity control of the UAVs to maintain the tight formation. Third, a particle swarm optimization-optimized reciprocal velocity obstacles (PSO-RVO) algorithm was utilized for obstacles avoidance and collision avoidance between the UAVs while navigating, with the aid of sonar ranging sensors onboard. The formation flying algorithm developed was tested through both simulation and experiment using two quadcopters with global positioning system (GPS) signals. For the simulation, the algorithm developed was tested on a virtual quadcopter using an open
Due to the ever increasingly stringent emission regulations for passenger vehicles, the efficiency and performance increase of Spark Ignition (SI) engines have been under the focus of the engine manufacturers. The quest for efficiency and performance increase has led to the development of increasingly complex powertrains and control strategies. The development process requires novel methods that feature a smooth transition between the real and the virtual prototypes. Furthermore, to reduce the development time and cost, developing an engine simulator with a low computational effort and good accuracy, which predicts the engine behavior on the entire operating range, plays a crucial role. This work proposes an Artificial Intelligence-based engine simulator for a Spark Ignition engine. The simulator relies on Neural Networks for the calculation of the main combustion metrics. In the first part of this paper, the data acquired at the engine test cell are analyzed. A shallow neural network
This paper presents the evolution of a series of connected, automated vehicle technologies from simulation to in-vehicle validation for the purposes of minimizing the fuel usage of a class-8 heavy duty truck. The results reveal that an online, hierarchical model-predictive control scheme, implemented via the use of extended horizon driver advisories for velocity and gear, achieves fuel savings comparable to predictions from software-in-the-loop (SiL) simulations and engine-in-the-loop (EiL) studies that operated with a greater degree of powertrain and chassis automation. The work of this paper builds on prior work that presented in detail this predictive control scheme that successively optimizes vehicle routing, arrival and departure at signalized intersections, speed trajectory planning, platooning, predictive gear shifting, and engine demand torque shaping. This paper begins by outlining the controller development progression from a previously published engine-in-the-loop study to
Automated driving systems (ADS) are one of the key modern technologies that are changing the way we perceive mobility and transportation. In addition to providing significant access to mobility, they can also be useful in decreasing the number of road accidents. For these benefits to be realized, candidate ADS need to be proven as safe, robust, and reliable; both by design and in the performance of navigating their operational design domain (ODD). This paper proposes a multi-pronged approach to evaluate the safety performance of a hypothetical candidate system. Safety performance is assessed through using a set of test cases/scenarios that provide substantial coverage of those potentially encountered in an ODD. This systematic process is used to create a library of scenarios, specific to a defined domain. Beginning with a system-specific ODD definition, a set of core competencies are identified. These core competencies are then considered both in isolation and in conjunction with other
With the enhancements in vehicle electrification and autonomous vehicles, Traffic systems are also being improved at an accelerated rate to aid the development of improving fuel economy standards. For this to be possible, it is essential that traffic can be accurately modeled and predicted. The existing toolsets are proprietary and expensive and traffic modeling is not a trivial task due to its dependence on various factors such as place, time, and weather. To address these issues, an entirely open-source Software-In-Loop (SIL) fleet-focused traffic modeling toolset has been developed with the ability to take environmental factors with powertrain-in-the-loop into account leveraging Simulation of Urban Mobility (SUMO) and python. The proposed SIL toolset encompasses the creation of a microscopic traffic distribution which accounts for the usual traffic trends of a typical day. Parameters such as the number of vehicles entering the network and the speed of all the vehicles at a time of a
Multispeed eDrive or eAxles arguably benefit the overall performance and efficiency of an electric vehicle. The majority of the benefits can be derived from rightsizing and optimal control over the gear shift sequence under various driving scenarios. This paper focuses on developing an optimal shift schedule and precise shift controls for a special utility three-wheeled electric vehicle using a Model-Based Design approach. The supervisory control logic is implemented using Stateflow. Further, the entire shift mechanism with the controller, stepper motor and driver is modeled in the Matlab-Simulink-Simscape environment. A novel solution of integrating the SolidWorks CAD model of the gearbox provided by the manufacturer with the shift mechanism using Simulink Multibody is presented. Finally, the controller model and C- code test methods are presented to validate the behavior and functional requirements using MIL, SIL and PIL on a prototype microcontroller chip.
Model-based system simulations play a critical role in the development process of the automotive industry. They are highly instrumental in developing embedded control systems during conception, design, validation, and deployment stages. Whether for model-in-the-loop (MiL), software-in-the-loop (SiL) or hardware-in-the-loop (HiL) scenarios, high-fidelity plant models are particularly valuable for generating realistic simulation results that can parallel or substitute for costly and time-consuming vehicle field tests. In this paper, the development of a powertrain plant model and its correlation performance are presented. The focus is on the following modules of the propulsion systems: transmission, driveline, and vehicle. The physics and modeling approach of the modules is discussed, and the implementation is illustrated in Amesim software. The developed model shows good correlation performance against test data in dynamic events such as launch, tip-in, tip-out, and gearshifts. To
ABSTRACT This paper describes the role of Modeling and Simulation (M&S) as a critical tool which must be necessarily used for the development, acquisition and testing of autonomous systems. To be used effectively key aspects of development, acquisition and testing must adapt and change to derive the maximum benefit from M&S. We describe how development, acquisition and testing should leverage and use M&S. We furthermore introduce and explain the idea of testable autonomy and conclude with a discussion of the qualities and requirements that M&S needs to have to effectively function in the role that we envision. Citation: J. Brabbs, S. Lohrer, P. Kwashnak, P. Bounker, M. Brudnak, “M&S as the Key Enabler for Autonomy Development, Acquisition and Testing”, In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), NDIA, Novi, MI, Aug. 13-15, 2019.
Items per page:
50
1 – 50 of 128