Browse Topic: Computer simulation

Items (4,489)
ABSTRACT V-shaped hulls for vehicles, to mitigate buried blast loads, are typically formed by bending plate. Such an approach was carried out in fabricating small test articles and testing them with buried-explosive blast load in Southwest Research Institute’s (SwRI) Landmine Test Fixture. During the experiments, detailed time dependent deflections were recorded over a wide area of the test article surface using the Dynamic Deformation Instrumentation System (DDIS). This information allowed detailed comparison with numerical simulations that were performed with LS-DYNA. Though in general there is good agreement on the deflection, in the specific location of the bends in the steel the agreement decreases in the lateral cross section. Computations performed with empirical blast loads developed by SwRI and by more computationally intensive ALE methods in LS-DYNA produced the same results. Computations performed in EPIC showed the same result. The metal plate was then bent numerically so
Walker, James D.Chocron, SidneyMoore, Thomas Z.Bradley, Joseph H.Carpenter, Alexander J.Weiss, CarlGerlach, Charles A.Grosch, Donald J.Grimm, MattBurguess, Victor W.
ABSTRACT For millennia the horse was the primary mode of transportation for mounted soldiers. Ingress and egress from a horse’s back is straightforward, space claims are only related to the size of the saddle, and there were no confining walls to restrict what soldiers carried while on horseback. With the rise of the modern mechanized army, vehicle design became more complex. Critical to the effective design of vehicle interiors is an accurate model of the encumbered operator or passenger. Developments in three-dimensional (3d) scanning, computer-aided design (CAD) and other model creation capabilities make it possible to reproduce accurately the underlying human form and to add equipment encumbrances. This paper relates approaches taken in studies where Soldiers or aviators were modeled to define space requirements or reaches. Details of the modeling process, validation, and study results are given. Future research is discussed
Corner, Brian D.Gordon, Claire C.Zehner, GregoryHudson, JeffreyKozycki, Richard
ABSTRACT In this paper, we discuss a neuroimaging experiment that employed a mission-based scenario (MBS) design, a new approach for designing experiments in simulated environments for human subjects [1]. This approach aims to enhance the realism of the Soldier-task-environment interaction by eliminating many of the tightly-scripted elements of a typical laboratory experiment; however, the absence of these elements introduces several challenges for both the experimental design and statistical analysis of the experimental data. Here, we describe an MBS experiment using a simulated, closed-hatch crewstation environment. For each experimental session, two Soldiers participated as a Commander-Driver team to perform six simulated low-threat security patrol missions. We discuss challenges faced while designing and implementing the experiment before addressing analysis approaches appropriate for this type of experimentation. We conclude by highlighting three example transition pathways from
Vettel, Jean M.Lance, Brent J.Manteuffel, ChrisJaswa, MatthewCannon, MarcelJohnson, TonyPaul, VictorOie, Kelvin S.
ABSTRACT The open-cell metal foams have an internal structure is a web of connected ligaments. Foams are made from pure or alloys of aluminum, nickel, steel, magnesium, titanium and copper. In addition to being light weight, the foams exhibit excellent stiffness-to-weight ratios. Some foams can be resilient materials in harsh environments and have high impact resistance. The foams have high conductivities and large surface area per unit volume. All of these attributes make metal foam an attractive core for heat exchange. For example, cooling of power electronics and for thermal management of ground vehicles can employ metal-foam designs. Numerical simulation of convection heat transfer due to airflow inside commercial aluminum foam is conducted in a commercial numerical package. For validation, actual air temperatures were locally measured inside heated commercial aluminum foam, and cooled by forced air flow using a specially-developed technique. Good agreement between the modeling and
Dukhan, NihadSULEIMAN, AHMED S.AL-RAMMAHI, MUNTADHER A.
ABSTRACT Military vehicles in the field are often required to perform severe emergency maneuvers to avoid obstacles and/or escape enemy fire. This paper proposes a combined direct yaw control (DYC) and emergency roll control (ERC) system to mitigate rollover in the studied military vehicle. The DYC uses a differential braking strategy to stabilize the vehicle yaw moment and is intended to reduce the risk of untripped rollovers and also help prevent the vehicle from skidding out, thus allowing the driver to maintain control of the vehicle. The ERC uses actuators located near the vehicle suspension to apply an upward force to the vehicle body to counter the roll angle. An off-road tire model was used with the overall vehicle model in commercially available vehicle simulation software to simulate emergency maneuvers on various driving surfaces. Simulation results show that the proposed control strategy helps prevent both tripped and untripped rollovers on various driving surfaces
Hopkins, BradTaheri, SaiedAhmadian, MehdiReid, Alexander
ABSTRACT Part of CREATE-GV’s Mercury, the Powertrain Analysis and Computational Environment (PACE) is a simulation tool that provides advanced behavioral modeling of the powertrain subsystem of conventional or hybrid-electric vehicles. PACE performs its task by converting an existing powertrain architecture created in Autonomie or Matlab/Simulink into HPC-ready C++ code using an automated code generation capability, which parses the powertrain model’s Simulink XML files. Utilizing PACE’s modular powertrain model structure, a Simulink lumped-mass thermal model has been developed separately to augment the original functionality of the powertrain model. The augmented powertrain model was then subjected to a high-fidelity max speed test in Mercury’s simulation environment to demonstrate the successful integration of a ‘3rd party’ component via the PACE module. The Mercury Driver Client was also modified to accept calculated temperatures as an input. Including thermal analysis in powertrain
Monroe, GabrielGoodin, ChristopherCard, AngelaDoude, MatthewHaupt, TomaszHenley, GregoryMazzola, MichaelShurin, Scott
Abstract Semi-active suspensions have drawn particular attention due to their superior performance over the other types of suspensions. One of their advantages is that their damping coefficient can be controlled without the need for any external source of power. In this study, three control approaches are implemented on a quarter-car model using MATLAB/Simulink. The investigated control methodologies are Acceleration Driven Damper, Power Driven Damper, and H∞ Robust Control. The three controllers are known as comfort-oriented approaches. H∞ Robust Control is an advanced method that guarantees transient performance and rejects external disturbances. It is shown that H∞ with the proposed modification, has the best performance although its relatively high cost of computation could be potentially considered as a drawback
Ghasemalizadeh, OmidTaheri, SaiedSingh, AmandeepGoryca, Jill
ABSTRACT This study utilized computer simulations to analyze the influence of vehicle weight on automotive performance, terrain traversability, combat effectiveness, and operational energy for the M1A2 Abrams, M2A3 Bradley, and M1126 Stryker. The results indicate that a 15% reduction in combat vehicle weight correlates to 0-20% or greater improvements in: automotive mobility (top speed, speed on grade, dash time, fuel economy), terrain traversability (minimum required soil strength, % Go-NoGo, off road speed), combat effectiveness (% of combat effective outcomes, hits sustained, time, average and top speed in kill zone), and operational energy (gallons of fuel and fuel truck deliveries). While it has always been “understood” that vehicle weight impacts performance, this study has actually successfully quantified the impact. Through the use of multiple simulation tools, this study shows that reduced vehicle weight improves automotive performance, which directly improves the combat
Hart, Robert J.Gerth, Richard J.
ABSTRACT A detailed methodology employing a system model of a tracked vehicle with a gun turret is used to analyze the stresses and loads applied to the gun mount as a result of gun firing events. The vehicle system model combines a Virtual Lab.Motion model of the tracked vehicle and gun mount which includes track super element, flexible gun mount body, and a beam element representation of the gun and gun tube sleeve coupled with a MATLAB/Simulink model of the hydraulic/pneumatic recoil system and gun pointing control system. This coupled system model with flexible components is needed for this analysis to determine the portion of the impulse that results in gun mount deformation. A brief overview of the vehicle system model, a detailed description of the gun mount model, and analysis of the gun mount loads and stress is included
Youtt, Dan
ABSTRACT This paper describes next generation modeling tools to solve a basic problem of concept analysis, which is the lack of component models that realistically estimate the performance of technology that has yet to be fully reduced to specific products. Three important classes of electric power components essential to future Army vehicles are addressed: integrated electric machines, battery energy storage, and traction motor drives. Behavior models are delivered in a common software simulation “wrapper” with a limited number of user settings that allow the ratings of the component to be scaled to the performance required by the vehicle concept represented in a larger simulation. This approach captures expert knowledge about components so the systems engineer managing the concept analysis can create reliable simulations quickly
Mazzola, Michael S.Molen, G. MarshallPhillips, StephenYoung, MatthewBillberry, CharlesCard, AngelaGafford, JamesKramer, DenisePozolo, Michael
ABSTRACT Simulation is critical to the development of effective unmanned ground vehicles (UGVs). Simulation provides the ability to test virtual hardware and software systems in conditions that may be difficult to recreate physically. An important benefit of simulation is that it grants researchers access to simulated hardware, such as sensors and vehicles, that might not be available otherwise. To successfully simulate both hardware and software systems, it is essential to acknowledge the needs and requirements of the simulation platform. In this paper, we investigate two simulation environments being used at Mississippi State University to model and simulate UGVs: the Mississippi State University Autonomous Vehicle Simulator (MAVS) and Gazebo. Within this paper we investigate the specific modeling needs for the Clearpath Robotics Warthog UGV in both simulation environments. We found that Gazebo has more options for vehicle and robot customization. However, Gazebo requires more up
Moore, Marc N.Ray, Payton A.Goodin, ChristopherHudson, Christopher R.Doude, MatthewCarruth, Daniel W.Ewing, Mark R.Towne, Brent W.
ABSTRACT Maintenance of local security is essential for the lethality and survivability in modern urban conflicts. Among solutions the Army is developing is an indirect-vision display (IVD) based sensor system supporting full-spectrum, 360°local area awareness. Unfortunately, such display solutions only address part of the challenge, with remaining issues spawned by the properties of human perceptual-cognitive function. The current study examined the influence of threat properties (e.g. threat type, distance, etc.) on detection performance while participants conducted a patrol through a simulated urban area. Participants scanned a virtual environment comprised of static and dynamic entities and reported those that were deemed potential threats. Results showed that the most influential variables were the characteristics of the targets; threats that appeared far away, behind the vehicle, and for short periods of time were most likely missed. Thus, if an IVD system is to be effective, it
Metcalfe, Jason S.Cosenzo, Keryl A.Johnson, TonyBrumm, BradleyManteuffel, ChristopherEvans, A. WilliamTierney, Terrance
Summary Growing environmental concerns coupled with the complex issue of global crude oil supplies drive automobile industry towards the development of fuel-efficient vehicles. Due to the possible multiple-power-source nature and the complex configuration and operation modes, the control strategy of a military vehicle is more complicated than that of a conventional vehicle. Furthermore, military vehicles often have heavier weights and are used to operate multiple functions such as engaging weapons, turning on sensors, silent watch, etc., which results in big load fluctuation. In this paper we present our research in optimizing power flow in a heavy vehicle for a given mission plan. A mission plan consists of a sequence of operations and speed profiles. The vehicle architecture will be modeled based on Stryker power system which consists of a diesel engine, a main battery pack, an auxiliary battery pack, and an APU. The APU can supply power to the auxiliary loads and auxiliary batteries
Murphey, Yi L.Masrur, M. AbulNeumann, Donald E.
ABSTRACT The objective is to develop a human-multiple robot system that is optimized for teams of heterogeneous robots control. A new human-robot system permits to ease the execution of remote tasks. An operator can efficiently control the physical multi-robots using the high level command, Drag-to-Move method, on the virtual interface. The innovative virtual interface has been integrated with Augmented Reality that is able to track the location and sensory information from the video feed of ground and aerial robots in the virtual and real environment. The advanced feature of the virtual interface is guarded teleoperation that can be used to prevent operators from accidently driving multiple robots into walls and other objects
Lee, SamHunt, ShawnCao, AlexPandya, Abhilash
ABSTRACT This paper investigates the validity of commonly used terramechanics models for light-weight vehicle applications while accounting for experimental variability. This is accomplished by means of cascading uncertainty up to the terminal point of operations measurement. Vehicle-terrain interaction is extremely complex, and thus models and simulation methods for vehicle mobility prediction are largely based on empirical test data. Analytical methods are compared to experimental measurements of key operational parameters such as drawbar force, torque, and sinkage. Models of these operational parameters ultimately depend on a small set of empirically determined soil parameters, each with an inherent uncertainty due to test variability. The soil parameters associated with normal loads are determined by fitting the dimensionless form of Bekker’s equation to the data given by the pressure-sinkage test. In a similar approach, the soil parameters associated with shear loads are
Jayakumar, ParamsothyMelanz, DanielMacLennan, JamieSenatore, CarmineIagnemma, Karl
ABSTRACT Teleoperated ground vehicles are an integral part of the U.S. Army and Marine Corps long range vision and a key transition technology for fully autonomous vehicles. However, the combination of marginally-stable vehicle dynamics and limited perception are a key challenge facing teleoperation of such platforms at higher speeds. New technologies for enhancing operator perception and automatically detecting and mitigating rollover risk are needed to realize sufficient safety and performance in these applications. This paper presents three rollover mitigation concepts for high speed teleoperation of heavy tactical vehicles, including model-predictive warning, negative obstacle avoidance, and reactive brake controls. A modeling and simulation approach was used to evaluate these concepts within the Autonomous Navigation Virtual Environment Laboratory (ANVEL). Vehicle models for both the M1078 cargo truck and RG-31 MRAP were used throughout concept evaluation over terrain ranging from
Lo, Jia-HsuanEye, SeanRohde, Steve M.Rohde, Mitchell M.
ABSTRACT Rubber tracks are now extremely competitive for vehicles up to 50 tons and fully fielded on 39 ton vehicles. They represent the best of what technology can offer for tracked vehicles, in terms of high durability, performance and low life cycle cost. This is mainly attributed to the optimization through the five (5) technological tools described in this paper. Better from its numerous distinctive advantages, rubber tracks can be adapted to suit virtually any specific need. This ductile rubber track technology can be shaped to match today’s requirements, with the help of advanced rubber compounding and computer simulations
Marcotte, Tommy
ABSTRACT Accuratet thermal simulations for the purpose of thermal or infrared signature management require accurate representation of all modes of heat transfer. For scenarios with complex fluid dynamics and convective heat transfer, traditional options have included very simple 0D methods or very computationally expensive 3D CFD simulations. Motivated by adding options between these extremes and tuning the method to a heat transfer focus, a 3D fluid dynamics solver is developed that is tightly integrated and automatically coupled with the MuSES thermal and EO/IR simulation software. Key applications of interest include wind flow around ground vehicles for the purpose of infrared signature management and HVAC air flow within cabins for the purpose of thermal management. The flow solver uses novel numerical techniques to simplify the standard Navier-Stokes equations and avoid calculations which may not be necessary for thermal simulations. Several domain meshing strategies, physics
Pryor, JoshuaKarnitz, DuncanPowers, WarrenBanyai, DouglasRynes, PeteTison, NathanKorivi, VamshiRuan, Yeefeng
ABSTRACT This paper develops a linear closed form equation as required for automatic plowing depth control of a mine clearing combat vehicle. The vehicle will be tasked with using its Mine Clearing Blade (MCB) to remove surface laid and buried land mines on undulating terrain so that other vehicles can follow its path without the threat of mines. Blade control must be automatic to ensure that the target depth of the cleared path is achieved and all mines on the path are removed. A closed form solution for real-time computing relating the MCB motion and hydraulic actuator movement is developed and implemented. The equations are provided in symbolic form so that the dimensions of the mechanism can be directly substituted and/or modified without re-derivation. Results were verified with field measured data and implemented in the controller of a real vehicle to successfully achieve objective goal of Automatic Mine Clearing
Tsai, Fuh-FengStrittmatter, Kevin
ABSTRACT Parametric analysis is an essential step in optimizing the performance of any system. In robotic systems, however, its usability is often limited by the lack of complex yet repeatable experiments required to gather meaningful data. We propose using the Robotics Interactive Visualization and Experimentation Toolbox (RIVET) in order to perform parametric analysis of robotic systems
Gonzalez, Juan PabloDodson, WilliamDean, RobertKreafle, GregLacaze, AlbertoSapronov, LeonidChilders, Marshal
ABSTRACT This paper presents a method to mitigate high latency in the teleoperation of unmanned ground systems through display prediction and state estimation. Specifically, it presents a simulation environment which models both sides of the teleoperation system in the laboratory. The simulation includes a teleoperated vehicle model to represent the dynamics in high fidelity. The sensors and actuators are modeled as well as the communication channel. The latency mitigation approach is implemented in this simulation environment, which consists of a feed-forward vehicle model as a state estimator which drives a predictive display algorithm. These components work together to help the operator receive immediate feedback regarding his/her control actions. The paper contains a technical discussion of the design as well as specific implementation. It concludes with the presentation of some experimental data which demonstrate significant improvement over the unmitigated case
Brudnak, Mark J.
ABSTRACT Model based design techniques are being used increasingly to predict vehicle performance before building prototype hardware. Tools like ADAMS and Simulink enable very detailed models of suspension components to be developed so vehicle performance can be accurately predicted. In creating models of vehicle systems, often there is a question about how much component detail or model fidelity is required to accurately model system performance. This paper addresses this question for modeling shock absorber performance by comparing a low fidelity and high fidelity shock absorber model. A high fidelity and low fidelity mathematical model of a shock absorber was developed. The low fidelity shock absorber model was parameterized according to real shock absorber hardware dimensions. Shock absorber force vs. velocity curves were calculated in Simulink. The results from the low fidelity and high fidelity model were compared to shock absorber force vs. velocity test results. New vehicle
Masini, ChrisYang, Xiaobo
ABSTRACT Computer models and simulations have become an indispensable tool for solving complex problems in many parts of vehicle development including powertrain engineering, mobility assessment, survivability analysis, and manufacturing and life cycle assessment. As computational power has increased and model accuracy has improved, engineers have come to depend on simulations to investigate and characterize systems. This raises the importance of model calibration and validation. Calibration is the process of tuning model parameters which are not directly measured in physical tests. These parameters maybe physical properties (material and soil properties, manufactured dimensions, engine operating points) which are difficult to measure or entirely non-physical model parameters. Calibration is necessary to ensure that models and simulation results are as close to physical reality as possible given modeling limitations and assumptions. This paper presents a calibration framework which
Aguilar, DavidAndrews, MarkLeyde, Brian
ABSTRACT Computational models are widely used in the prediction of occupant injury responses and vehicle structural performance of ground vehicles subjected to underbody blasts. Although these physics based computational models incorporate all the material and environment data, the classic models are typically deterministic and do not capture the potential variations in the design, testing and operating parameters. This paper investigates the effect of one such variation in physical tests, namely, variations in the position of occupant setup on the occupant injury responses. To study the effects of occupant position, a series of vertical drop tower tests were performed in a controlled setup. A vertical drop tower test involves an Anthropomorphic Test Device (ATD) dummy positioned on a seat and the setup is dropped on an energy attenuating surface, thus producing a desired shock pulse on the seat structure. The experimental data was analyzed for sensitivity of occupant position and ATD
Ramalingam, JaisankarPrall, Nancy
Items per page:
1 – 50 of 4489